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* Measuring datasets contributions in a joint Bayesian
inference

* Cooperative game theory perspective
* Characteristic function: Posterior-prior information gain
* Convergence properties of the Shapley value
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player 1 Joint Inference:
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player 1 Joint Inference:

{} pE(0) = Ls(0;Xs) m(6)
P @ | es:xg) ane)

€ :

m

player 2 player 3

© Copyright National University of Singapore. All Rights Reserved.



Collaborative Setting: Assumptions NUS
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player 1 Joint Inference:
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Assumption 1: Conditional
Independence
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player 1 Joint Inference:
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Assumption 3:
Distinguisability
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player 1 Joint Inference:
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Assumption 4: The Prior
@ ] supports the true parameter
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 Characteristic function:

V™(S) = KL(P™|[II) = /@ log (4P /dIT) d P

* Shapley value:

O V") =D gcn gy ws [V (S UL = V7(5)]
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* Define the limiting game:

V(5):=0.51log|Zs| it S is nonempty,
V(S):=0 otherwise

 Under Assumptions 1-4
* For a uniformly* distributed prior
* The following holds:

d(i; V™) — o(5; V™) = (i V) — ¢(j; V)

for any two players 7 and 7.
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* Assumptions 1-4 allow for closed form approximation of joint
posteriors

* This is given by Bernstein-von Mises theorem
* Approximate KL divergence using the normal posterior
e Characteristic function decomposes
* By linearity of Shapley value, when taking differences:
— Constant terms cancel out
— Left with term that depends only on Fisher information
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Collaborative Online Framework 95 ol

* Bundling of data points:
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* Setting:
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Collaborative Online Framework NUS
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In each iteration:

1. Use current available data points to compute an esti-
mate ¢ of the true parameter.

2. Let m; denote the number of player i’s data points
received so far. For i = 1,2, use sample approximation
to estimate the Fisher information at &:

X 1 my 0 0 K]
?:——J 1(09 log £;(0; :CZJ))C%) log L;(0; :IS‘U)) .

3. Collect 1 and ro data points from the respective play-
ers 1 and 2 s.t. the proportion 1m1 +71 : ma+1r» of their
cumulative data points is equal to |Zo|'/* : |Z;|1/*.
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Experimental Results
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