LyaNet: A Lyapunov Framework for Training Neural ODEs

Ivan D. Jimenez Rodriguez, Aaron D. Ames, Yisong Yue

Challenges

- Dynamics for single data point (x, y).
- 2-Dimensional Hidden Logits State
- Binary Classification: Red Class is correct

Undesirable Chaotic Dynamics:

- Dynamics often flow in the wrong direction
- Solutions are "fragile"
- Poor Generalization

Trajectories

Idea: Enforce Always Making Progress

Measuring Progress on Supervised Loss

For a sample, define a potential function:

$$
\begin{aligned}
V_{\eta^{*}}(\eta) & =\mathcal{L}\left(\eta, \eta^{*}\right) \\
& =\left\|\eta-\eta^{*}\right\|_{2}^{2}
\end{aligned}
$$

Similar potential function can be selected for Cross-Entropy.

Exponential Convergence (CIFAR-10)

Our Method: Robustness Guarantees (Illustrated)

Nominal Case

Perturbed Case

Bound

Conclusions

- LyaNet: A novel approach for training Neural ODEs using Lyapunov Stability
- Main benefits:
- Fast convergence of inference dynamics
- Empirical and provable robustness
- Allows adaptation of control theoretic tools to the learning context
- Other Applications:
- Enforce constraints on the learned dynamics

