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Introduction to Non-Parametric Two-Sample Tests (TSTs)
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* How to make the judgement --- the test compares the test statistic with a particular threshold: if the threshold is exceeded,
then the test accepts the alternative hypothesis (H;: P # Q); otherwise, accepts the null hypothesis (Hy: P = Q).

* Test statistic D(Sp, Sg) --- the differences between the mean embedding based on a parameterized kernel for
each distribution, e.g., maximum mean discrepancy!!! (MMD).

e Test criterion F (Sp, Sq; k) --- a non-parametric TST optimizes its learnable parameters via maximizing its test
criterion, thus approximately maximizing the lower bound of its test power.

» Test power --- the probability of correctly rejecting H,, against a particular number of inputs from H; .

[1] Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B., and Smola, A. A kernel two- ICML 2022 2
sample test. The Journal of Machine Learning Research, 13(1):723-773,2012.



Motivation

* Non-parametric TSTs have been widely applied to analysing critical data in
physics!!l, neurophysiology!?!, biology!!, etc.

* The adversarial robustness of non-parametric TSTs has not been studied so far,
despite its extensive studies for deep neural networks.

We undertake the pioneer study on adversarial robustness of non-parametric TSTs!

[1] Baldi, P., Sadowski, P., and Whiteson, D. Searching for exotic particles in high-energy physics

with deep learning. Nature communications, 5(1):1-9, 2014.

[2] Rasch, M., Gretton, A., Murayama, Y., Maass, W., and Logothetis, N. Predicting spiking activity

from local field potentials. Journal of Neurophysiology, 99:1461-1476, 2008.

[3] Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P., Scholkopf, B., and Smola, A.J.
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Adversarial Attacks Against Non-Parametric TSTs

We consider a potential risk that causes a malfunction of a non-parametric TST:

1) The attacker aims to deteriorate the test’s test power.

2) The attacker can craft an adversarial pair (Sp, 5@) as the input to the test during
the testing procedure.

3) The two sets SQ and Sq should be nearly indistinguishable --- we assume the
adversarial perturbation is [.,-bounded.



Adversarial Attacks Against Non-Parametric TSTs

Theoretical analysis

* An [,-bounded adversary can make the * The test power of a non-parametric
adversarial perturbation imperceptible, thus TST could be further degraded in the
guaranteeing the attack’s invisibility. adversarial setting.

Proposition 1. Under Assumptions 1 to 3, we use n, sam- Theorem 2. In the setup of Proposition 1, given émr =
ples to train a kernel kg parameterized with 6 and n. sam- arg maxycg_ F(ko), r("<) denoting the rejection thresh-
ples to run a test of significance level o.. Given the adver- old, F* = supge 6. F(ky), and constants C1,Cs,C3 de-
sarial budget € > 0, the benign pair (Sp, Sg) and the cor- pending on v, L1, \, s, Re and k, with probability at least
responding adversarial pair (Sp, Sg) where Sq € B.[Sg), 1 — 9, the test under adversarial attack has power

with the probability at least 1 — 6, we have

/\2 ~
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Adversarial Attacks Against Non-Parametric TSTs

Generation of adversarial pairs Algorithm 1 Ensemble Attack (EA)

1: Input: benign pair (Sp, Sg), maximum PGD step T,
adversarial budget e, test criterion function set I@‘, weight
set W, checkpoint C = {co, ..., cn}

2: Output: adversarial pair (Sp, Sg)

3: Sg) < Sgand p <€

4 8§ {Ih 1,0, @ —psign(V 0 £(Se, SG Ny

5: Linin < min{€(Sp, S3), £(Se, S3)}

6: Sg ¢ 83 if lin = £(Sp, Sy else Sg + S

7

8

9

* TST-agnostic ensemble attack

cfort=1to7T —1do

So = argmin > wT) F(I) (S, Sg) SGH Ly 0@ —psign(V,wl(Se.SENHL,
Se€B[Sq] ]:'(Ji)e]ﬁ,w(Ji)EW if £min > £(Sp, Sg+1)) then
‘ — ’ 100 Sg < SUMY and oyn  £(Sp, SE)
/ S]P S 11: endif
(S, So) 12:  ift € C then

13: if Condition 1 or Condition~2 then
14: p < p/2 and S(gﬂ) +— So
15: end if
16: end if
17: end for
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Adversarial Attacks Against Non-Parametric TSTs

Benign pair (Sp, Sg)
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Defending Non-Parametric TSTs

Adversarially learning kernels for non-parametric TSTs

* The learning objective of robust kernels is formulated as a max-min optimization:

§ ~ argmax min F(Sp,So;ke)
0 So€Be[Sp]

* Our defense is based on deep kernels, i.e., robust deep kernels for TSTs (MMD-RoD).

Algorithm 2 Adversarially Learning Deep Kernels

1: Input: benign pair (Sp, Sgp), maximum PGD step T,
adversarial budget €, checkpoint C = {co,...,cn},
deep kernel kéROD) parameterized by 6, training epochs
E, learning rate n
Output: parameters of robust deep kernel 6
fore =1to £ do
X < minibatch from Sp; Y < minibatch from Sg
Generate an adversarial pair (X,Y") by Algorithm 1

with setting = {]:"(ROD) (-, kéROD))}
00+ Uveﬁ(ROD)(X, Y ké()RoD))
7: end for




Experiments

Test power evaluated under ensemble attacks

We conduct ensemble attacks towards the following six typical non-parametric TSTs:

 MMD-D!!: tests based on MMD with deep kernels

 MMD-G!?!: tests based on MMD with Gaussian kernels

» C2ST-SBI: classification TST based on Sign

o C2ST-LI: classification TST based on the discriminator’s measure of confidence

* Mean embedding>¢! (ME): tests based on differences in Gaussian kernel mean embeddings at
specific locations

» Smoothing characteristic functionsl>! (SCF): tests based on Gaussian kernel mean embeddings at
a set of optimized frequency

[1
[2
[3
[4
[5
[6

Liu, F., Xu, W., Lu,J., Zhang, G., Gretton, A., and Sutherland, D. J. Learning deep kernels for non-parametric two-sample tests. In ICML, 2020.

Sutherland, D.J., Tung, H.-Y ., Strathmann, H., De, S., Ramdas, A., Smola, A. J., and Gretton, A. Generative models and model criticism via optimized maximum mean discrepancy. In ICLR, 2017.
Lopez-Paz, D. and Oquab, M. Revisiting classifier two-sample tests. In ICLR, 2017.

Cheng, X. and Cloninger, A. Classification logit two-sample testing by neural networks. IEEE Transactions on Information Theory, 2022.

Chwialkowski, K. P., Ramdas, A., Sejdinovic, D., and Gretton, A. Fast two-sample testing with analytic representations of probability measures. In NeurIPS, 2015.

Jitkrittum, W., Szabo, Z., Chwialkowski, K. P., and Gretton, A. Interpretable distribution features with maximum testing power. In NeurIPS, 2016.
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Experiments

Test power evaluated under ensemble attacks

* Many existing non-parametric TSTs suffer from severe adversarial vulnerabilities.

Table 1. We report the average test power of six typical non-parametric TSTs (o = 0.05) as well as Ensemble on five benchmark datasets
in benign and adversarial settings, respectively. The lower the test power under attacks is, the more adversarially vulnerable is the TST.

Datasets € nte | EA )/ MMD-D MMD-G C2ST-S C2ST-L ME SCF Ensemble
Blob 0.05 100 X 1.000+0000 1.000+0.000 1.000+0.000 1.000+0.000 0.992+0.002 0.962+0.001 | 1.000+0.000
Vv || 0.131+0007 0.099+0003 0.021+0003 0.715+0001  0.154+0011  0.098+0.022 |0.846-0.030

HDGM 0.05 3000 X 1.000+0000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.002 0.942+0.013 §1.000-+0.000
Vv || 0.259+0009 0.081+0003 0.105+0000 0.090+0.000 0.500+0.025 0.006+0.000 |0.734+0.078

Higgs 0.05 5000 X 1.000+0.000 1.000+0.000 0.970+0002 0.984+0.003 0.830+0042 0.675+0.071 | 1.000+0.000
Vv || 0.027+0001  0.002+0000 0.065+0000 0.080+0.006 0.263+0.022 0.058+0.005 |0.422+0.013

MNIST 0.05 500 X 1.000+0.000 0.904+0.000 1.000+0000 1.000+0.000 1.000+0.000 0.386-+0.005 | 1.000+0.000
Vv || 0.087+0040 0.102+0002 0.003+0000 0.005+0.000 0.062+0002 0.001+0.000 |0.213+0.026

X 1.000+0000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 0.033+0.001 J 1.0000.000

CIFAR-10 00314 500 | '/ \ g 187,001 0.279:000 01072007 0119001 007920000 0.000:0000/ 0.429:0005

“HDGM denotes high-dimensional Gaussian mixture.
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Experiments

Test power evaluated under ensemble attacks

* The ensemble of non-parametric TSTs is not an effective defense against ensemble attacks.

The test power of an ensemble of TSTs is formulated as follows:

TP(J) = Espnpm,59~0n [V.7,e51(T3(SP, Sq) = 1)]

Table 1. We report the average test power of six typical non-parametric TSTs (o = 0.05) as well as Ensemble on five benchmark datasets
in benign and adversarial settings, respectively. The lower the test power under attacks is, the more adversarially vulnerable is the TST.

Datasets € nie | EA | MMD-D MMD-G C2ST-S C2ST-L ME SCF { Ensemble
Blob 0.05 100 X 1.000+0000 1.000+0.000 1.000+0.000 1.000+0.000 0.992+0002 0.962+0.001 | 1.000+0.000
' Vv | 0.131+0007  0.099+0003 0.021+0003 0.715+0001 0.154+0011  0.098-+0.022 | 0.846+0.030
HDGM 0.05 3000 X 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.002 0.942+0.013 | 1.000+0.000
' Vv | 0.259+0000 0.081+0003 0.105+0000 0.090+0000 0.500+0025 0.006-+0.000 | 0.734+0.078
Higas 0.05 5000 X 1.000+0.000 1.000+0.000 0.970+0002 0.984+0003 0.830+0.042 0.675+0071 | 1.000+0.000
' Vv | 0.027+0001  0.002+0000 0.065+0.000 0.080+0.006 0.263+0022 0.058+0.005 | 0.422+0.013
MNIST 0.05 500 X 1.000+0.000 0.904+0.000 1.000+0000 1.000+0.000 1.000+0.000 0.386+0.005 | 1.000+0.000
' v | 0.087+0040 0.102+0002 0.003+0000 0.005+0.000 0.062+0002 0.001+0.000 | 0.213-+0.026
X 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 1.000+0.000 0.033+0.001 | 1.000+0.000

CIFAR-10 0.0314 500 Vv | 0.187+0001 0.279+0004 0.107+0.017 0.119+0.021  0.079+0000 0.000-0.000 \_0.429+0.005/
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Experiments

Robustness of MMD-RoD

 MMD-RoD can significantly enhance the robustness of non-parametric TSTs without
sacrificing the test power in the benign setting on most tasks such as MNIST and CIFAR-10.

Table 2. Test power of MMD-RoD and Ensemble .

EA Blob HDGM Higgs ( MNIST CIFAR-10
X | 1.00+000 0.61+007 0.53+0.00 | 1.00+0.12  1.00+0.00
MMD-Rob Vv | 0.19+006 0.00+001 0.23+0.02 | 0.98+000 0.91+0.00
Ensemblet | = 1.00+000 1.00+000 1.00+0.00 | 1.00+0.00  1.00+0.00
v | 0.89+001 0.73+008 0.54+004 \ 0.98+£000 0.95:+000
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Experiments

Robustness of MMD-RoD

* Limitation: MMD-RoD unexpectedly perform poorly on HDGM and Higgs datasets, which has
low test power in the benign and adversarial settings.

Table 2. Test power of MMD-RoD and Ensemble ™.

EA | Blob ( HDGM  Higgs | MNIST CIFAR-10

X | 1.00+000| 0.61+007 0.53+0.00 | 1.00+0.12  1.00+0.00
MMD-Rob Vv | 0.19+006 | 0.00+001 0.23+0.02 | 0.98+000  0.91+0.00
Ensemblet | = 1.00+0.00 | 1.00+000 1.00+000 | 1.00+0.00  1.00+0.00
v | 0.89+001\ 0.73+008 0.54+004 ) 0.98+000 0.95+0.00

We leave further improving the adversarial robustness of non-parametric TSTs as future work.
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