

School of Computing

Adversarial Attack and Defense for Non-Parametric Two-Sample Tests

Xilie Xu^{1*} Jingfeng Zhang^{2*} Feng Liu³ Masashi Sugiyama²⁴ Mohan Kankanhalli¹

¹School of Computing, National University of Singapore

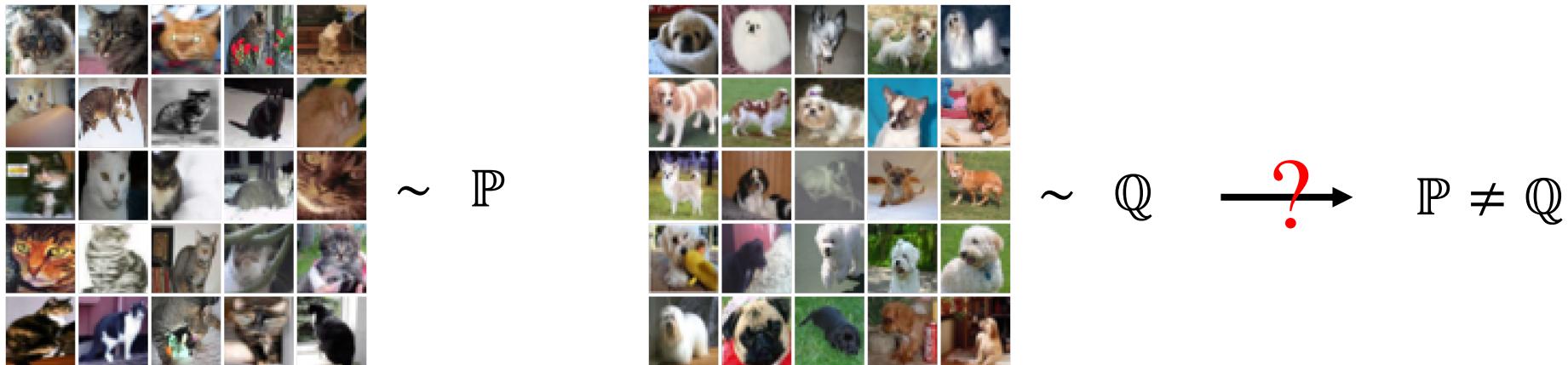
²RIKEN Center for Advanced Intelligence Project (AIP)

³School of Mathematics and Statistics, The University of Melbourne

⁴Graduate School of Frontier Sciences, The University of Tokyo

*Equal contribution

Introduction to Non-Parametric Two-Sample Tests (TSTs)



- How to make the judgement --- the test compares the test statistic with a particular threshold: if the threshold is exceeded, then the test accepts the alternative hypothesis ($\mathcal{H}_1: \mathbb{P} \neq \mathbb{Q}$); otherwise, accepts the null hypothesis ($\mathcal{H}_0: \mathbb{P} = \mathbb{Q}$).
- Test statistic $\mathcal{D}(S_{\mathbb{P}}, S_{\mathbb{Q}})$ --- the differences between the mean embedding based on a parameterized kernel for each distribution, e.g., maximum mean discrepancy^[1] (MMD).
- Test criterion $\hat{\mathcal{F}}(S_{\mathbb{P}}, S_{\mathbb{Q}}; k)$ --- a non-parametric TST optimizes its learnable parameters via maximizing its test criterion, thus approximately maximizing the lower bound of its test power.
- Test power --- the probability of correctly rejecting \mathcal{H}_0 against a particular number of inputs from \mathcal{H}_1 .

[1] Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B., and Smola, A. A kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012.

Motivation

- Non-parametric TSTs have been widely applied to analysing critical data in physics^[1], neurophysiology^[2], biology^[3], etc.
- The adversarial robustness of non-parametric TSTs has not been studied so far, despite its extensive studies for deep neural networks.

We undertake the pioneer study on adversarial robustness of non-parametric TSTs!

[1] Baldi, P., Sadowski, P., and Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. *Nature communications*, 5(1):1–9, 2014.

[2] Rasch, M., Gretton, A., Murayama, Y., Maass, W., and Logothetis, N. Predicting spiking activity from local field potentials. *Journal of Neurophysiology*, 99:1461–1476, 2008.

[3] Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P., Scholkopf, B., and Smola, A. J. Integrating structured biological data by kernel maximum mean discrepancy. *Bioinformatics*, 22(14):e49–e57, 2006.

Adversarial Attacks Against Non-Parametric TSTs

We consider a potential risk that causes a malfunction of a non-parametric TST:

- 1) The attacker aims to deteriorate the test's test power.
- 2) The attacker can craft an adversarial pair $(S_{\mathbb{P}}, \tilde{S}_{\mathbb{Q}})$ as the input to the test during the testing procedure.
- 3) The two sets $\tilde{S}_{\mathbb{Q}}$ and $S_{\mathbb{Q}}$ should be nearly indistinguishable --- we assume the adversarial perturbation is l_{∞} -bounded.

Adversarial Attacks Against Non-Parametric TSTs

Theoretical analysis

- An l_∞ -bounded adversary can make the adversarial perturbation imperceptible, thus guaranteeing the attack's *invisibility*.
- The test power of a non-parametric TST could be further degraded in the adversarial setting.

Proposition 1. *Under Assumptions 1 to 3, we use n_{tr} samples to train a kernel k_θ parameterized with θ and n_{te} samples to run a test of significance level α . Given the adversarial budget $\epsilon \geq 0$, the benign pair $(S_{\mathbb{P}}, S_{\mathbb{Q}})$ and the corresponding adversarial pair $(S_{\mathbb{P}}, \tilde{S}_{\mathbb{Q}})$ where $\tilde{S}_{\mathbb{Q}} \in \mathcal{B}_\epsilon[S_{\mathbb{Q}}]$, with the probability at least $1 - \delta$, we have*

$$\begin{aligned} & \sup_{\theta} |\widehat{\text{MMD}}^2(S_{\mathbb{P}}, \tilde{S}_{\mathbb{Q}}; k_\theta) - \widehat{\text{MMD}}^2(S_{\mathbb{P}}, S_{\mathbb{Q}}; k_\theta)| \\ & \leq \frac{8L_2\epsilon\sqrt{d}}{\sqrt{n_{\text{te}}}} \sqrt{2\log\frac{2}{\delta} + 2\kappa\log(4R_\Theta\sqrt{n_{\text{te}}})} + \frac{8L_1}{\sqrt{n_{\text{te}}}}. \end{aligned}$$

Theorem 2. *In the setup of Proposition 1, given $\hat{\theta}_{n_{\text{tr}}} = \arg \max_{\theta \in \bar{\Theta}_s} \hat{\mathcal{F}}(k_\theta)$, $r^{(n_{\text{te}})}$ denoting the rejection threshold, $\mathcal{F}^* = \sup_{\theta \in \bar{\Theta}_s} \mathcal{F}(k_\theta)$, and constants C_1, C_2, C_3 depending on $\nu, L_1, \lambda, s, R_\Theta$ and κ , with probability at least $1 - \delta$, the test under adversarial attack has power*

$$\Pr(n_{\text{te}}\widehat{\text{MMD}}^2(S_{\mathbb{P}}, \tilde{S}_{\mathbb{Q}}; k_{\hat{\theta}_{n_{\text{tr}}}}) > r^{(n_{\text{te}})}) \geq \Phi\left[\sqrt{n_{\text{te}}}\left(\mathcal{F}^* - \frac{C_1}{\sqrt{n_{\text{tr}}}}\sqrt{\log\frac{\sqrt{n_{\text{tr}}}}{\delta}} - \frac{C_2L_2\epsilon\sqrt{d}}{\sqrt{n_{\text{te}}}}\sqrt{\log\frac{\sqrt{n_{\text{te}}}}{\delta}}\right) - C_3\sqrt{\log\frac{1}{\alpha}}\right].$$

Adversarial Attacks Against Non-Parametric TSTs

Generation of adversarial pairs

- TST-agnostic ensemble attack

$$\tilde{S}_{\mathbb{Q}} = \arg \min_{\tilde{S}_{\mathbb{Q}} \in \mathcal{B}_{\epsilon}[S_{\mathbb{Q}}]} \underbrace{\sum_{\hat{\mathcal{F}}^{(\mathcal{J}_i)} \in \hat{\mathbb{F}}, w^{(\mathcal{J}_i)} \in \mathbb{W}} w^{(\mathcal{J}_i)} \hat{\mathcal{F}}^{(\mathcal{J}_i)}(S_{\mathbb{P}}, \tilde{S}_{\mathbb{Q}})}_{\ell(S_{\mathbb{P}}, \tilde{S}_{\mathbb{Q}})}$$

Algorithm 1 Ensemble Attack (EA)

```

1: Input: benign pair  $(S_{\mathbb{P}}, S_{\mathbb{Q}})$ , maximum PGD step  $T$ ,  

adversarial budget  $\epsilon$ , test criterion function set  $\hat{\mathbb{F}}$ , weight  

set  $\mathbb{W}$ , checkpoint  $\mathbb{C} = \{c_0, \dots, c_n\}$   

2: Output: adversarial pair  $(S_{\mathbb{P}}, \tilde{S}_{\mathbb{Q}})$   

3:  $S_{\mathbb{Q}}^{(0)} \leftarrow S_{\mathbb{Q}}$  and  $\rho \leftarrow \epsilon$   

4:  $S_{\mathbb{Q}}^{(1)} \leftarrow \{\Pi_{\mathcal{B}_{\epsilon}[x_i^{(0)}]}(x_i^{(0)} - \rho \text{sign}(\nabla_{x_i^{(0)}} \ell(S_{\mathbb{P}}, S_{\mathbb{Q}}^{(0)})))\}_{i=1}^n$   

5:  $\ell_{\min} \leftarrow \min\{\ell(S_{\mathbb{P}}, S_{\mathbb{Q}}^{(0)}), \ell(S_{\mathbb{P}}, S_{\mathbb{Q}}^{(1)})\}$   

6:  $\tilde{S}_{\mathbb{Q}} \leftarrow S_{\mathbb{Q}}^{(0)}$  if  $\ell_{\min} \equiv \ell(S_{\mathbb{P}}, S_{\mathbb{Q}}^{(0)})$  else  $\tilde{S}_{\mathbb{Q}} \leftarrow S_{\mathbb{Q}}^{(1)}$   

7: for  $t = 1$  to  $T - 1$  do  

8:    $S_{\mathbb{Q}}^{(t+1)} \leftarrow \{\Pi_{\mathcal{B}_{\epsilon}[x_i^{(t)}]}(x_i^{(t)} - \rho \text{sign}(\nabla_{x_i^{(t)}} \ell(S_{\mathbb{P}}, S_{\mathbb{Q}}^{(t)})))\}_{i=1}^n$   

9:   if  $\ell_{\min} > \ell(S_{\mathbb{P}}, S_{\mathbb{Q}}^{(t+1)})$  then  

10:      $\tilde{S}_{\mathbb{Q}} \leftarrow S_{\mathbb{Q}}^{(t+1)}$  and  $\ell_{\min} \leftarrow \ell(S_{\mathbb{P}}, S_{\mathbb{Q}}^{(t+1)})$   

11:     end if  

12:     if  $t \in \mathbb{C}$  then  

13:       if Condition 1 or Condition 2 then  

14:          $\rho \leftarrow \rho/2$  and  $S_{\mathbb{Q}}^{(t+1)} \leftarrow \tilde{S}_{\mathbb{Q}}$   

15:       end if  

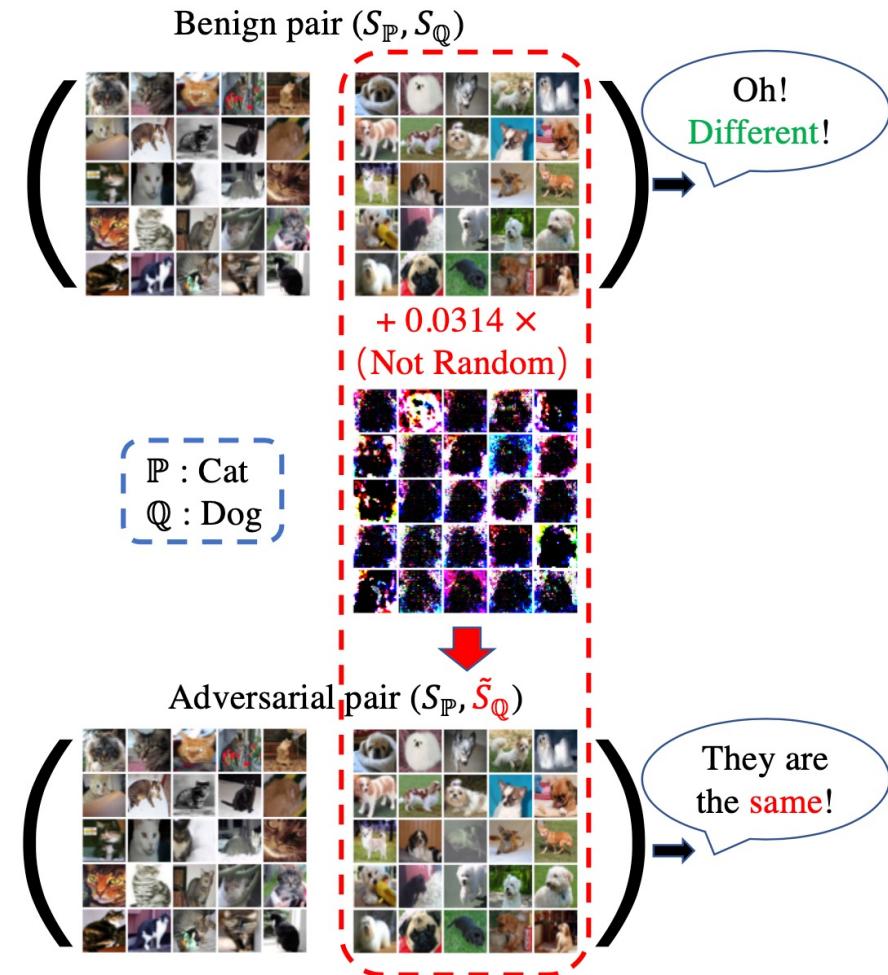
16:     end if  

17: end for

```

Adversarial Attacks Against Non-Parametric TSTs

An example of adversarial pair $(S_{\mathbb{P}}, \tilde{S}_{\mathbb{Q}})$ generated by embedding an adversarial perturbation in the benign set $S_{\mathbb{Q}}$ of the benign pair $(S_{\mathbb{P}}, S_{\mathbb{Q}})$.



Defending Non-Parametric TSTs

Adversarially learning kernels for non-parametric TSTs

- The learning objective of robust kernels is formulated as a max-min optimization:

$$\hat{\theta} \approx \arg \max_{\theta} \min_{\tilde{S}_Q \in \mathcal{B}_\epsilon[S_Q]} \hat{\mathcal{F}}(S_P, \tilde{S}_Q; k_\theta)$$

- Our defense is based on deep kernels, i.e., robust deep kernels for TSTs (MMD-RoD).

Algorithm 2 Adversarially Learning Deep Kernels

- 1: **Input:** benign pair (S_P, S_Q) , maximum PGD step T , adversarial budget ϵ , checkpoint $\mathbb{C} = \{c_0, \dots, c_n\}$, deep kernel $k_\theta^{(\text{RoD})}$ parameterized by θ , training epochs E , learning rate η
- 2: **Output:** parameters of robust deep kernel θ
- 3: **for** $e = 1$ **to** E **do**
- 4: $X \leftarrow$ minibatch from S_P ; $Y \leftarrow$ minibatch from S_Q
- 5: Generate an adversarial pair (X, \tilde{Y}) by Algorithm 1
 with setting $\hat{\mathbb{F}} = \{\hat{\mathcal{F}}^{(\text{RoD})}(\cdot, \cdot; k_\theta^{(\text{RoD})})\}$
- 6: $\theta \leftarrow \theta + \eta \nabla_\theta \hat{\mathcal{F}}^{(\text{RoD})}(X, \tilde{Y}; k_\theta^{(\text{RoD})})$
- 7: **end for**

Experiments

Test power evaluated under ensemble attacks

We conduct ensemble attacks towards the following six typical non-parametric TSTs:

- MMD-D^[1]: tests based on MMD with deep kernels
- MMD-G^[2]: tests based on MMD with Gaussian kernels
- C2ST-S^[3]: classification TST based on Sign
- C2ST-L^[4]: classification TST based on the discriminator's measure of confidence
- Mean embedding^[5,6] (ME): tests based on differences in Gaussian kernel mean embeddings at specific locations
- Smoothing characteristic functions^[5,6] (SCF): tests based on Gaussian kernel mean embeddings at a set of optimized frequency

[1] Liu, F., Xu, W., Lu, J., Zhang, G., Gretton, A., and Sutherland, D. J. Learning deep kernels for non-parametric two-sample tests. In ICML, 2020.

[2] Sutherland, D. J., Tung, H.-Y., Strathmann, H., De, S., Ramdas, A., Smola, A. J., and Gretton, A. Generative models and model criticism via optimized maximum mean discrepancy. In ICLR, 2017.

[3] Lopez-Paz, D. and Oquab, M. Revisiting classifier two-sample tests. In ICLR, 2017.

[4] Cheng, X. and Cloninger, A. Classification logit two-sample testing by neural networks. IEEE Transactions on Information Theory, 2022.

[5] Chwialkowski, K. P., Ramdas, A., Sejdinovic, D., and Gretton, A. Fast two-sample testing with analytic representations of probability measures. In NeurIPS, 2015.

[6] Jitkrittum, W., Szabo, Z., Chwialkowski, K. P., and Gretton, A. Interpretable distribution features with maximum testing power. In NeurIPS, 2016.

Experiments

Test power evaluated under ensemble attacks

- Many existing non-parametric TSTs suffer from severe adversarial vulnerabilities.

Table 1. We report the average test power of six typical non-parametric TSTs ($\alpha = 0.05$) as well as Ensemble on five benchmark datasets in benign and adversarial settings, respectively. The lower the test power under attacks is, the more adversarially vulnerable is the TST.

Datasets	ϵ	n_{te}	EA	MMD-D	MMD-G	C2ST-S	C2ST-L	ME	SCF	Ensemble
Blob	0.05	100	✗	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	0.992 \pm 0.002	0.962 \pm 0.001	1.000 \pm 0.000
			✓	0.131 \pm 0.007	0.099 \pm 0.003	0.021 \pm 0.003	0.715 \pm 0.091	0.154 \pm 0.011	0.098 \pm 0.022	0.846 \pm 0.030
HDGM	0.05	3000	✗	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.002	0.942 \pm 0.013	1.000 \pm 0.000
			✓	0.259 \pm 0.009	0.081 \pm 0.003	0.105 \pm 0.000	0.090 \pm 0.000	0.500 \pm 0.025	0.006 \pm 0.000	0.734 \pm 0.078
Higgs	0.05	5000	✗	1.000 \pm 0.000	1.000 \pm 0.000	0.970 \pm 0.002	0.984 \pm 0.003	0.830 \pm 0.042	0.675 \pm 0.071	1.000 \pm 0.000
			✓	0.027 \pm 0.001	0.002 \pm 0.000	0.065 \pm 0.000	0.080 \pm 0.006	0.263 \pm 0.022	0.058 \pm 0.005	0.422 \pm 0.013
MNIST	0.05	500	✗	1.000 \pm 0.000	0.904 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	0.386 \pm 0.005	1.000 \pm 0.000
			✓	0.087 \pm 0.040	0.102 \pm 0.002	0.003 \pm 0.000	0.005 \pm 0.000	0.062 \pm 0.002	0.001 \pm 0.000	0.213 \pm 0.026
CIFAR-10	0.0314	500	✗	1.000 \pm 0.000	0.033 \pm 0.001	1.000 \pm 0.000				
			✓	0.187 \pm 0.001	0.279 \pm 0.004	0.107 \pm 0.017	0.119 \pm 0.021	0.079 \pm 0.000	0.000 \pm 0.000	0.429 \pm 0.005

* HDGM denotes high-dimensional Gaussian mixture.

Experiments

Test power evaluated under ensemble attacks

- The ensemble of non-parametric TSTs is not an effective defense against ensemble attacks.

The test power of an ensemble of TSTs is formulated as follows:

$$TP(\mathbb{J}) = \mathbb{E}_{S_{\mathbb{P}} \sim \mathbb{P}^m, S_{\mathbb{Q}} \sim \mathbb{Q}^n} [\bigvee_{\mathcal{J}_i \in \mathbb{J}} \mathbb{1}(\mathcal{J}_i(S_{\mathbb{P}}, S_{\mathbb{Q}}) = 1)]$$

Table 1. We report the average test power of six typical non-parametric TSTs ($\alpha = 0.05$) as well as Ensemble on five benchmark datasets in benign and adversarial settings, respectively. The lower the test power under attacks is, the more adversarially vulnerable is the TST.

Datasets	ϵ	n_{te}	EA	MMD-D	MMD-G	C2ST-S	C2ST-L	ME	SCF	Ensemble
Blob	0.05	100	✗	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	0.992 \pm 0.002	0.962 \pm 0.001	1.000 \pm 0.000
			✓	0.131 \pm 0.007	0.099 \pm 0.003	0.021 \pm 0.003	0.715 \pm 0.091	0.154 \pm 0.011	0.098 \pm 0.022	0.846 \pm 0.030
HDGM	0.05	3000	✗	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.002	0.942 \pm 0.013	1.000 \pm 0.000
			✓	0.259 \pm 0.009	0.081 \pm 0.003	0.105 \pm 0.000	0.090 \pm 0.000	0.500 \pm 0.025	0.006 \pm 0.000	0.734 \pm 0.078
Higgs	0.05	5000	✗	1.000 \pm 0.000	1.000 \pm 0.000	0.970 \pm 0.002	0.984 \pm 0.003	0.830 \pm 0.042	0.675 \pm 0.071	1.000 \pm 0.000
			✓	0.027 \pm 0.001	0.002 \pm 0.000	0.065 \pm 0.000	0.080 \pm 0.006	0.263 \pm 0.022	0.058 \pm 0.005	0.422 \pm 0.013
MNIST	0.05	500	✗	1.000 \pm 0.000	0.904 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	1.000 \pm 0.000	0.386 \pm 0.005	1.000 \pm 0.000
			✓	0.087 \pm 0.040	0.102 \pm 0.002	0.003 \pm 0.000	0.005 \pm 0.000	0.062 \pm 0.002	0.001 \pm 0.000	0.213 \pm 0.026
CIFAR-10	0.0314	500	✗	1.000 \pm 0.000	0.033 \pm 0.001	1.000 \pm 0.000				
			✓	0.187 \pm 0.001	0.279 \pm 0.004	0.107 \pm 0.017	0.119 \pm 0.021	0.079 \pm 0.000	0.000 \pm 0.000	0.429 \pm 0.005

Experiments

Robustness of MMD-RoD

- MMD-RoD can significantly enhance the robustness of non-parametric TSTs without sacrificing the test power in the benign setting on most tasks such as MNIST and CIFAR-10.

Table 2. Test power of MMD-RoD and Ensemble⁺.

	EA	Blob	HDGM	Higgs	MNIST	CIFAR-10
MMD-RoD	✗	1.00 ± 0.00	0.61 ± 0.07	0.53 ± 0.00	1.00 ± 0.12	1.00 ± 0.00
	✓	0.19 ± 0.06	0.00 ± 0.01	0.23 ± 0.02	0.98 ± 0.00	0.91 ± 0.00
Ensemble ⁺	✗	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00
	✓	0.89 ± 0.01	0.73 ± 0.08	0.54 ± 0.04	0.98 ± 0.00	0.95 ± 0.00

Experiments

Robustness of MMD-RoD

- Limitation: MMD-RoD unexpectedly perform poorly on HDGM and Higgs datasets, which has low test power in the benign and adversarial settings.

Table 2. Test power of MMD-RoD and Ensemble⁺.

	EA	Blob	HDGM	Higgs	MNIST	CIFAR-10
MMD-RoD	✗	1.00 ±0.00	0.61±0.07	0.53±0.00	1.00 ±0.12	1.00 ±0.00
	✓	0.19 ±0.06	0.00±0.01	0.23±0.02	0.98 ±0.00	0.91 ±0.00
Ensemble ⁺	✗	1.00±0.00	1.00±0.00	1.00±0.00	1.00±0.00	1.00±0.00
	✓	0.89 ±0.01	0.73±0.08	0.54±0.04	0.98 ±0.00	0.95 ±0.00

We leave further improving the adversarial robustness of non-parametric TSTs as future work.

Thank you for your interest in our work!

Poster: Hall E #1010 (6:30 p.m. EDT — 8:30 p.m. today)