

Metric-Fair Classifier Derandomization

Jimmy Wu Yatong Chen Yang Liu

Computer Science and Engineering
UC Santa Cruz

What is a Stochastic Classifier?

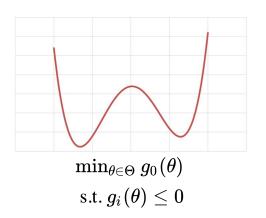
Stochastic (binary) classifier: maps each input to the probability of a positive prediction

$$f: X o [0,1]$$
Input Probability (of being classified as 1)

Why Derandomize Stochastic Classifiers?

Stochastic classifiers: useful for performance reasons

e.g. solving non-convex optimization problems



Deterministic classifiers: better for practical reasons

e.g. consistent, easy to test

$$f($$
 $) = 0.5$

Even the **same** person may get completely **different** prediction every time!

Classifier Derandomization

Problem statement

- ullet Input: a **stochastic** classifier f:X o [0,1]
- ullet Sample: a **deterministic classifier** $\hat{f}: X o \{0,1\}$ that *closely approximates* f in expectation:

Our Contribution

A sample-efficient procedure to derandomize f to \hat{f} , while preserving:

1) expected outputs of f:

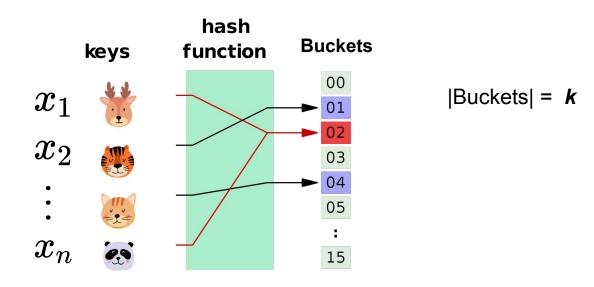
$$\mathbb{E}_{\hat{f}}\left[\hat{f}\left(x
ight)
ight]pprox f(x),\;\;\;orall x\in X$$

2) individual (metric) fairness:

$$|f(x) - f(x')| \leq lpha \cdot d(x,x')$$
 $\Rightarrow \mathbb{E}\left[\left|\hat{f}(x) - \hat{f}(x')
ight|
ight] \leq O(lpha) \cdot d(x,x')$ distance metric

Previous Approach: Hashing [CNG 2019]

Main idea: simulate randomness with pairwise-independent hashing



Previous Approach: Hashing [CNG 2019]

CNG's Derandomization Procedure:

- 1) Sample a pairwise-independent hash function $\,h_{
 m pl} \sim {\cal H}_{
 m pl}\,$ with k buckets
- 2) Define \hat{f} based on $h_{
 m PI}$:

$$\hat{f}\left(x
ight):=1\left\{f(x)\geq\left|rac{h_{ ext{PI}}\left(x
ight)}{k}
ight\}$$

Previous Approach: Hashing [CNG 2019]

Why does it work?

$$\hat{f}\left(x
ight):=1\left\{f(x)\geq \boxed{rac{h_{ ext{PI}}\left(x
ight)}{k}}
ight\}$$

pseudo-random number in [0, 1]

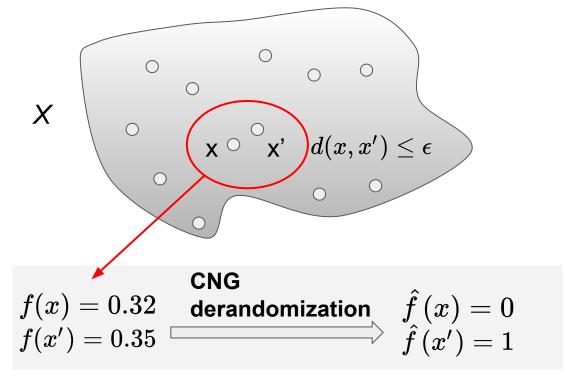
Theoretical Guarantee:

Theorem [CNG 2019, informal] Given f, this procedure samples \hat{f} satisfying:

(Output Approximation)
$$\mathbb{E}_{x\sim\mathcal{D}}[\hat{f}\left(x
ight)]pprox\mathbb{E}_{x\sim\mathcal{D}}[f(x)]$$
 w.h.p. over \hat{f}

[CNG 2019] Does Not Preserve Metric Fairness

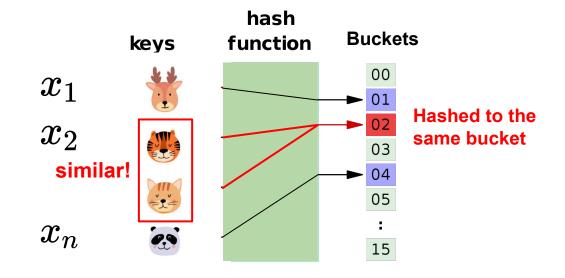
Suppose f is metric-fair: $|f(x) - f(x')| \leq \alpha \cdot d(x, x'), \ \ \forall x, x'$



Our Approach: Locality Sensitive Hashing

Locality-sensitive hashing (LSH): $h_{
m LS} \sim \mathcal{H}_{
m LS}$

$$ext{Pr}_{h\sim\mathcal{H}_{ ext{LS}}}ig[h(x)
eq hig(x'ig)ig]=dig(x,x'ig), \ \ orall x
eq x'$$



Our Approach: Locality Sensitive Hashing

Our Derandomization Procedure:

- 1) [New] Sample a LSH function $h_{
 m LS} \sim {\cal H}_{
 m LS}$
- 2) Sample a pairwise-independent hash function $h_{
 m PI} \sim {\cal H}_{
 m PI}$
- 3) Define \hat{f} based on both h_{PI} and h_{LS} :

$$\hat{f}\left(x
ight) := 1\left\{f(x) \geq rac{h_{ ext{PI}}(extbf{h}_{ ext{LS}}(extbf{x}))}{k}
ight\}$$

Intuition:

- h_{LS} : ensures similar items get the same prediction
- ullet h_{PI} : ensures dissimilar items are treated randomly

Our Approach: Locality Sensitive Hashing

Our theoretical guarantee:

Theorem [informal] Given a metric-fair f that satisfies

$$|f(x) - f(x')| \le \alpha \cdot d(x, x'), \ \ \forall x, x'$$

Our procedure samples \hat{f} satisfying:

$$\mathbb{E}_{x \sim \mathcal{D}}[\hat{f}\left(x
ight)] pprox \mathbb{E}_{x \sim \mathcal{D}}[f(x)]$$
 w.h.p. over \hat{f}

$$\mathbb{E}_{\hat{f}}[|\hat{f}\left(x
ight) - \hat{f}\left(x'
ight)|] \lesssim (lpha + rac{1}{2}) \cdot d(x,x')$$

Thank you!

- > Paper: https://arxiv.org/abs/2206.07826
- > Poster Session #2

Poster thumbnail

Input: a **stochastic** classifier f:X o [0,1]

Sample: a **deterministic classifier** $\hat{f}: X o \{0,1\}$ that preserves

1) expected outputs of f:

$$\mathbb{E}_{\hat{f}}\left[\hat{f}\left(x
ight)
ight]pprox f(x),\;\;\;orall x\in X$$

2) individual (metric) fairness:

$$|f(x) - f(x')| \leq lpha \cdot d(x,x')$$
 $\Rightarrow \mathbb{E}\left[\left|\hat{f}\left(x
ight) - \hat{f}\left(x'
ight)
ight|
ight] \leq O(lpha) \cdot d\left(x,x'
ight)$ distance metric