5%z, UNIVERSITY OF CALIFORNIA

SHNTH BRI

Metric-Fair Classifier Derandomization

Jimmy Wu Yatong Chen Yang Liu

Computer Science and Engineering
UC Santa Cruz

What is a Stochastic Classifier?

Stochastic (binary) classifier: maps each input to the probability of a

f: X — 10,1

Input Probability
(of being classified as 1)

Why Derandomize Stochastic Classifiers?

Stochastic classifiers: useful for Deterministic classifiers: better for
performance reasons practical reasons
e.g. solving non-convex e.g. consistent, easy to debug

optimization problems

= 0.5
mingcg go (6) Even the same person may get
completely different prediction every
st.g;(0) <0 time!

Classifier Derandomization

Problem statement

e Input: a stochastic classifier f: X — [0, 1]

e Sample: a deterministic classifier f : X — {0, 1}that preserves

various properties of f in expectation.

Our Contribution

A sample-efficient procedure to derandomize f to f while preserving:
1) expected output of f on any x:

E;[f (@) ~ f(a), VoeX
2) individual (metric) fairness of f:

f(z) — f(a')| < a-d(z,2')
:>E[
f

A

f@) - f @)]] < 0(@)-d (@)

4
distance metric

Previous Approach: Hashing [CNG 2019]

Main idea: simulate randomness with pairwise-independent hashing

hash
keys function Buckets
00
L1 t& 01 |Buckets| = k
b 4
02
m2 E;‘T"é% 03
. ’ 04

m 05

CEn oN 15

Previous Approach: Hashing [CNG 2019]

CNG’s Derandomization Procedure:

1) Sample a pairwise-independent hash function hy; ~ Hp; with k buckets
2) Define f based on hyp;:

A

f@)=1{f(=)> 21

Previous Approach: Hashing [CNG 2019]

CNG’s Derandomization Procedure:

1) Sample a pairwise-independent hash function hy; ~ Hp; with k buckets
2) Define f based on hyp;:

A

hp1 () do-rand
Why does it work? f(z):=1 {f(x) > 2 } flfriihzuﬁa?n [c:)r,nﬂ

Previous Approach: Hashing [CNG 2019]

f@)=1{f@) > =21

Theorem [CNG 2019, informal] Given f, this procedure samples f
satisfying:

(Output A A
Approximation) E:p|f (z)] = Esup|f(z)] whp.over f

[CNG 2019] Does Not Preserve Metric Fairness

Suppose fis metric-fair: | f(x) — f(z')| < a-d(x,z"), Vz,z’

CNG
f(x) =0.32 derandomization f(x)=0
=1

f(a') =0.35 | ’ F@)

Our Approach: Locality Sensitive Hashing

Locality-sensitive hashing (LSH): h; ¢ ~ H,

Py, [h(z) # h(2')] = d(z,2'), Vo # 2

hash
keys function Buckets
i 00
m 1 v T—— »01

- Hashed to the

5132 éj!;% 03 Same bucket
Similar 04
items |4 / 05
Ln o8 |

15

Our Approach: Locality Sensitive Hashing

Our Derandomization Procedure:

1) [New] Sample a LSH function h;§ ~ H,
2) Sample a pairwise-independent hash function hp, ~ Hy,
3) Define f based on both hy and

f@)=1{f(x) > oD}

Intuition:
e i 5: ensures similar items get the same prediction

e hpr: ensures dissimilar items are treated randomly

Our Approach: Locality Sensitive Hashing

Our theoretical guarantee:

Theorem [informal] Given a metric-fair f that satisfies

f(z) - f(')] < a-d(z,2"), Yo,z

Our procedure samples f satisfying:

il?)::f)l;:mation) Ezp [f (CE)] s]EwND[f(w)] Whp over f

proseves B [|f(2) ~ f ()] S (ot 3) - dla,)

metric fairness))

Thank you!

> Paper: https://arxiv.org/abs/2206.07826
> Poster Session: Hall E #1221

Yatong Chen Metric-fair classifier derandomization ICML 2022

https://arxiv.org/abs/2206.07826

