

Temporal Difference Learning for Model Predictive Control

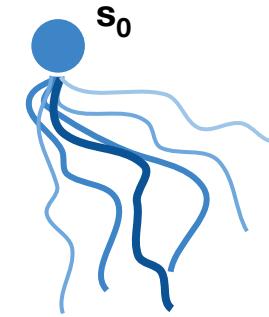
Nicklas Hansen, Xiaolong Wang*, Hao Su*

ICML 2022

UC San Diego

Data-Driven Model Predictive Control (MPC)

- Plan using a **learned** model of the environment
- Objective $\mathbb{E}_{\Gamma} \sim \Pi_{\theta} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right]$ intractable



(repeat for ∞ steps)

Data-Driven Model Predictive Control (MPC)

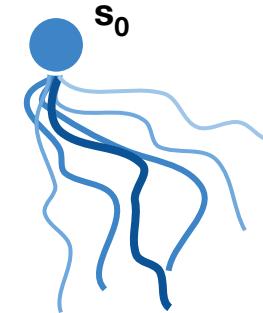
- Plan using a **learned** model of the environment

- Objective $\mathbb{E}_{\Gamma} \sim \Pi_{\theta} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right]$ intractable

- Instead find **locally optimal** trajectory $\mathbb{E}_{\Gamma} \sim \Pi_{\theta} \left[\sum_{t=0}^{\textcolor{red}{H}} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right]$

- **Two major challenges:**

- Compounding model errors
 - Cost of long-horizon planning



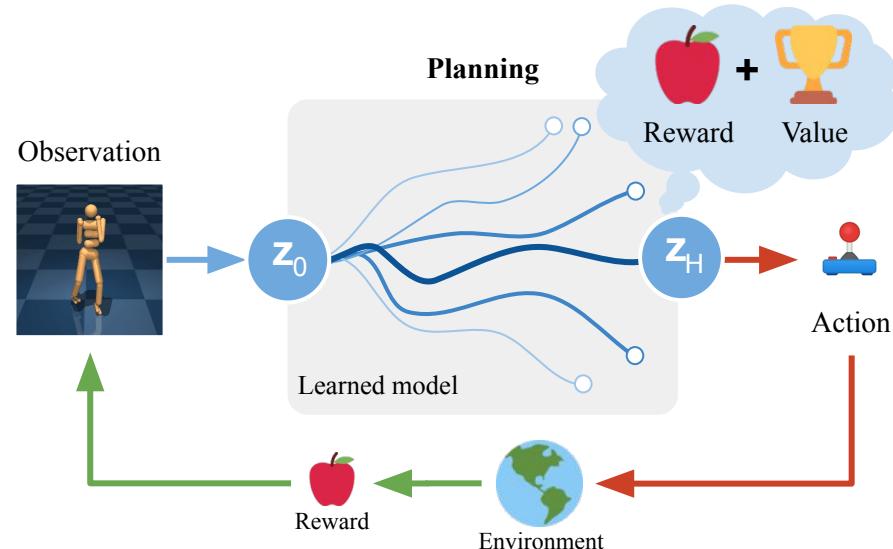
(repeat for H steps)

How can TD-learning help MPC?

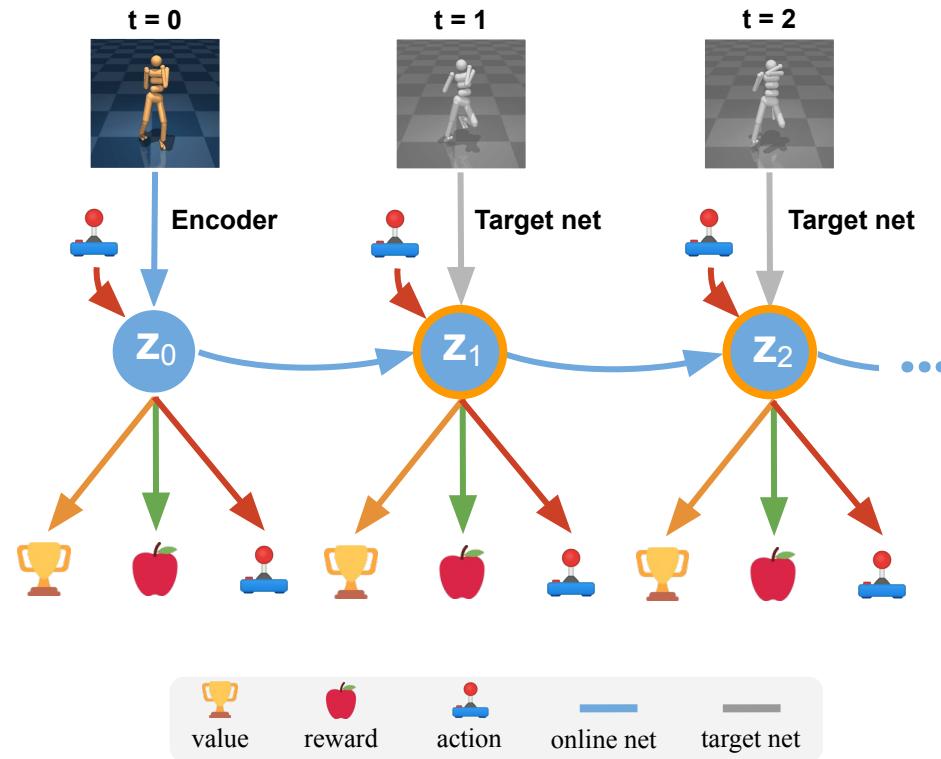
Inference (planning)

- Planning in latent space
- Return estimate:

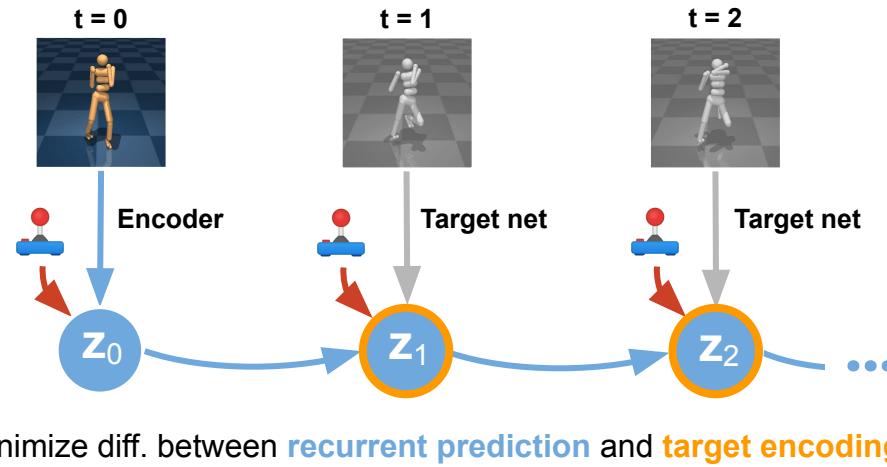
$$\mathbb{E}_{\Gamma} \left[\underbrace{\gamma^H Q_{\theta}(\mathbf{z}_H, \mathbf{a}_H)}_{\text{Value}} + \underbrace{\sum_{t=0}^{H-1} \gamma^t R_{\theta}(\mathbf{z}_t, \mathbf{a}_t)}_{\text{Rewards}} \right]$$



TD-MPC



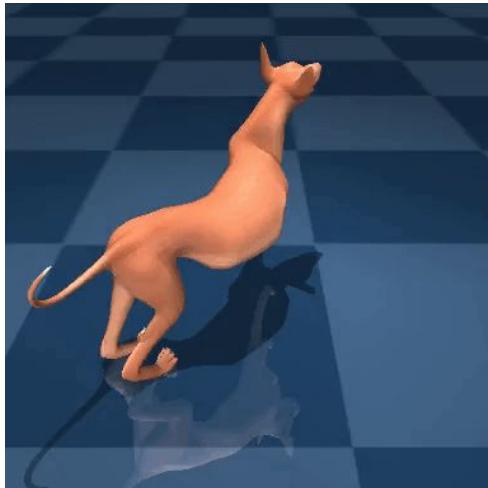
TD-MPC



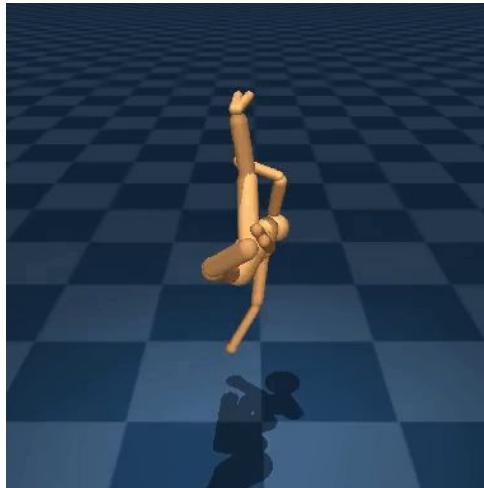
Results

TD-MPC solves *challenging* continuous control problems

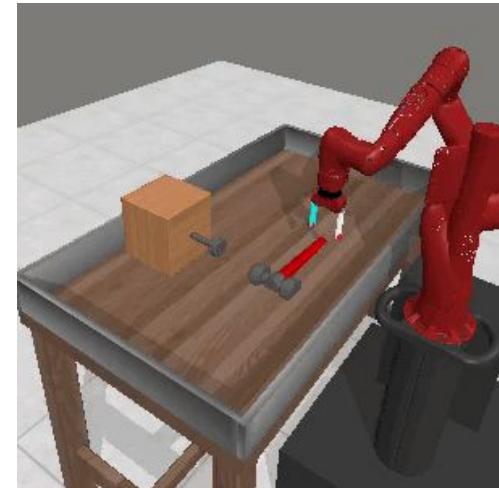
Dog Run



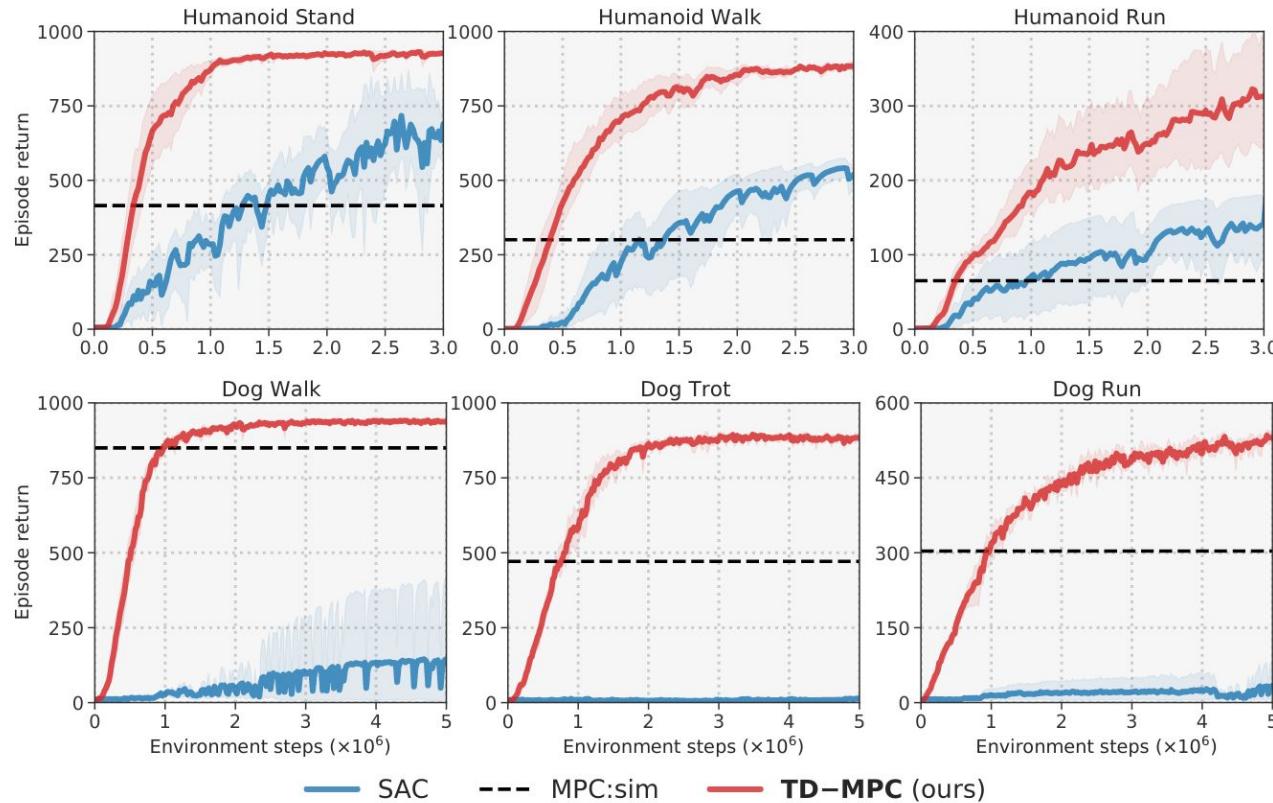
Humanoid Run



Hammer



Results



nicklashansen.github.io/td-mpc