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Data-Driven Model Predictive Control (MPC)

e Plan using a learned model of the environment

So
e Objective E;~ 11y Z’ytr(st,at)} intractable .

(repeat for oo steps)
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e Instead find locally optimal trajectory Ep ~ 11, [Z A (st, at)}
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e Two major challenges:
o Compounding model errors (repeat for [] steps)

o Cost of long-horizon planning
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How can TD-learning help MPC?

Inference (planning)
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TD-MPC
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TD-MPC
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Minimize diff. between recurrent prediction and target encoding
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Results

TD-MPC solves challenging continuous control problems
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Results

TD-MPC
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— SAC -=-- MPC:sim == TD-MPC (ours)



nicklashansen.github.io/td-mpc



