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Why Language Models for Translation?

Language models have shown great performance with large-scale
pretraining, and enable in-context learning

Language models encode different inductive biases compared to
encoder-decoder models, which might benefit translation

However, how language models work for translation has been rarely studied

We explore this question jointly with model scaling and cross-lingual
transfer

Brown et al., 2020; Raffel et al., 2020; Xue et al., 2021; Wang et al., 2021



Language Model Architectures for Translation
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PrefixLM CasualLM:
o Bidirectional attention over source input o Strict (causal) language model
o Only target-side induced MLE loss o Both source + target MLE loss

Using one module to jointly perform understanding and generation



Model Variants: Examining More Design Choices

PrefixLM Using Top Layer Encodings (TopOnly) CasualLM Target Only Loss (TgtOnly)
final-layer encodings for target attention remove the source side training objective
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Question: different LMs have different inductive biases, do they matter for translation?



On Model Scaling and Cross-lingual Transfer

Increasing the # model parameters has different effects
on different models: how does it affect LMs?

[ Model Scaling }

Language
Model
Architectures

[ o — } Sharing params over source & target (tying) affects the

T transfer dynamics: how LMs behaves on transfer?

We study the interaction of these three aspects of language models for translation



Experiments

Transformer base & big model: 8/16 heads, 512/1024 model size

Dataset

o Bilingual: WMT14 En-Fr, WMT19 En-Zh, Web En-De (2B samples)
o Multilingual: WMT En-De/Zh/Fr, OPUS-100 (Zhang et al., 2020)

Model Scaling

o Encoder-decoder: increase model depth
o Language model: increasing either model depth (“~-Deep”) or model width (“-Wide”)

Evaluation
o SacreBLEU
o Log-perplexity score (PPL) for scaling



Do Design Choices Matter? Yes! Especially for Small-size Model

I Scale LMs’ Depth

Test BLEU on WMT14 En-Fr

PrefixLM PrefixLM-TopOnly CausalLM CausalLM-TgtOnly

Results for LMs aligned to a 3-layer standard encoder-decoder model.

PrefixLM > CausalLM

o  PrefixLM: Using final-layer source encodings work better for translation
o CausalLM: Adding the source-side training objective doesn’t improve quality



Do Design Choices Matter? Yes! Especially for Small-size Model

I Scale LMs’ Depth [0 Scale LMs’ Width
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PrefixLM PrefixLM-TopOnly CausalLM CausalLM-TgtOnly
Results for LMs aligned to a 3-layer standard encoder-decoder model.
Deep > Wide

Increasing depth is more effective for language modeling than increasing width



Does Model Scaling Matter? Yes! Gap narrows at scale
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CausallLM still retains a gap, especially

with the source loss.



Does Model Scaling Matter? Yes! Gap narrows at scale

Test BLEU on WMT14 En-Fr
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BLEU scores show similar trends. Still, LMs tend to underperform EncDec.
Note the relationship between BLEU and PPL is non-trivial (Ghorbani et al., 2021)
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How LMs and Scaling Affect Cross-lingual Transfer?
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Model scaling improves cross-lingual transfer for all models

PrefixLM greatly improves zero-shot translation.



How LMs and Scaling Affect Cross-lingual Transfer?
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The improvement of PrefixLM comes from its reduction of off-target translation
(Zhang et al., 2020)



To Summarize

e lLanguage model architecture matters for translation

o PrefixLM > CausalLM, Deep > Wide, TopOnly > Layerwise, TgtOnly > Src+Tgt

e Model scaling matters a lot

o The impact of architectural differences gradually reduce as models are scaled up
o The whole scaling picture is recommended for model comparison in the future

e Surprising impact on cross-lingual transfer
o PrefixLM largely benefits zero-shot transfer

Paper: https://arxiv.org/abs/2202.00528
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https://arxiv.org/abs/2202.00528

