

A Langevin-like Sampler for Discrete **Distributions**

Ruqi Zhang Xingchao Liu UT Austin/Purdue UT Austin

Qiang Liu **UT** Austin

Discrete variables are ubiquitous

Discrete variables are ubiquitous

Discrete data

Text

- beginning in december 1934, training exercises were conducted for the tetrarchs and their crews using hamilcar gliders
- · beginning in march 1946, training exercises were conducted by the tetrarchs and their crews with hamilcar gliders .
- beginning in may 1926, training exercises were conducted between the tetrarchs and their crews using hamiltar gliders.
- · beginning in late 1942, training exercises were conducted with the tetrarchs and their crews onboard hamilcar gliders .
- beginning in september 1961, training exercises were conducted between the tetrarchs and their crews in hamilcar gliders.

	A	В	С	D	Е	F	G	
1	Region	Gender	Style	Ship Date	Units	Price	Cost	
2	East	Boy	Tee	1/31/2005	12	11.04	10.42	
3	East	Boy	Golf	1/31/2005	12	13	12.6	
4	East	Boy	Fancy	1/31/2005	12	11.96	11.74	TI DI
5	East	Girl	Tee	1/31/2005	10	11.27	10.56	Tabular Data
6	East	Girl	Golf	1/31/2005	10	12.12	11.95	rabutai Data
7	East	Girl	Fancy	1/31/2005	10	13.74	13.33	
8	West	Boy	Tee	1/31/2005	11	11.44	10.94	
9	West	Boy	Golf	1/31/2005	11	12.63	11.73	
10	West	Boy	Fancy	1/31/2005	11	12.06	11.51	
11	West	Girl	Tee	1/31/2005	15	13.42	13.29	
12	West	Girl	Golf	1/31/2005	15	11.48	10.67	

Discrete variables are ubiquitous

Discrete data

Text

- · beginning in december 1934, training exercises were conducted for the tetrarchs and their crews using hamiltar gliders
- · beginning in march 1946, training exercises were conducted by the tetrarchs and their crews with hamilcar gliders .
- beginning in may 1926, training exercises were conducted between the tetrarchs and their crews using hamiltar gliders.
- · beginning in late 1942, training exercises were conducted with the tetrarchs and their crews onboard hamilcar gliders.
- beginning in september 1961, training exercises were conducted between the tetrarchs and their crews in hamiltar gliders.

	A	В	C	D	Е	F	G	
1	Region	Gender	Style	Ship Date	Units	Price	Cost	
2	East	Boy	Tee	1/31/2005	12	11.04	10.42	
3	East	Boy	Golf	1/31/2005	12	13	12.6	
4	East	Boy	Fancy	1/31/2005	12	11.96	11.74	T 1 D 1
5	East	Girl	Tee	1/31/2005	10	11.27	10.56	Tabular Data
6	East	Girl	Golf	1/31/2005	10	12.12	11.95	Tabutai Data
7	East	Girl	Fancy	1/31/2005	10	13.74	13.33	
8	West	Boy	Tee	1/31/2005	11	11.44	10.94	
9	West	Boy	Golf	1/31/2005	11	12.63	11.73	
10	West	Boy	Fancy	1/31/2005	11	12.06	11.51	
11	West	Girl	Tee	1/31/2005	15	13.42	13.29	
12	West	Girl	Golf	1/31/2005	15	11.48	10.67	

Discrete models

Binary neural networks

[Qin et al. 2020]

Gibbs sampling

Gibbs sampling

Gibbs sampling

Gibbs with Gradients

Gibbs sampling

Gibbs with Gradients

Only update one dim: suffer from high-dimensional and highly correlated distributions!

Continuous Sampler: Langevin algorithm

$$\theta' = \theta + \frac{\alpha}{2} \nabla U(\theta) + \sqrt{\alpha} \xi, \qquad \xi \sim \mathcal{N}(0, I)$$

Continuous Sampler: Langevin algorithm

$$\theta' = \theta + \frac{\alpha}{2} \nabla U(\theta) + \sqrt{\alpha} \xi, \qquad \xi \sim \mathcal{N}(0, I)$$

- Gradients guide the sampler to efficiently explore high probability regions
- Cheaply update all coordinates in parallel in a single step

Continuous Sampler: Langevin algorithm

$$\theta' = \theta + \frac{\alpha}{2} \nabla U(\theta) + \sqrt{\alpha} \xi, \qquad \xi \sim \mathcal{N}(0, I)$$

- Gradients guide the sampler to efficiently explore high probability regions
- Cheaply update all coordinates in parallel in a single step

What is the analogue of the Langevin algorithm in discrete domains?

$$q(\theta'|\theta) = \frac{\exp\left(-\frac{1}{2\alpha} \left\|\theta' - \theta - \frac{\alpha}{2} \nabla U(\theta)\right\|_{2}^{2}\right)}{Z_{\Theta}(\theta)}$$

$$q(\theta'|\theta) = \frac{\exp\left(-\frac{1}{2\alpha} \left\|\theta' - \theta - \frac{\alpha}{2} \nabla U(\theta)\right\|_{2}^{2}\right)}{Z_{\Theta}(\theta)}$$

Langevin proposal is applicable to any kind of spaces

$$q(\theta'|\theta) = \frac{\exp\left(-\frac{1}{2\alpha} \left\|\theta' - \theta - \frac{\alpha}{2} \nabla U(\theta)\right\|_{2}^{2}\right)}{Z_{\Theta}(\theta)}$$

- Langevin proposal is applicable to any kind of spaces
 - When $\Theta = \mathbb{R}^d$, recover the Gaussian proposal

$$q(\theta'|\theta) = \frac{\exp\left(-\frac{1}{2\alpha} \left\|\theta' - \theta - \frac{\alpha}{2} \nabla U(\theta)\right\|_{2}^{2}\right)}{Z_{\Theta}(\theta)}$$

- Langevin proposal is applicable to any kind of spaces
 - When $\Theta = \mathbb{R}^d$, recover the Gaussian proposal
 - When Θ is a discrete domain, obtain a gradient-based discrete proposal

$$q(\theta'|\theta) = \frac{\exp\left(-\frac{1}{2\alpha} \left\|\theta' - \theta - \frac{\alpha}{2} \nabla U(\theta)\right\|_{2}^{2}\right)}{Z_{\Theta}(\theta)}$$

- Langevin proposal is applicable to any kind of spaces
 - When $\Theta = \mathbb{R}^d$, recover the Gaussian proposal
 - When Θ is a discrete domain, obtain a gradient-based discrete proposal
- Coordinatewise factorization $q(\theta'|\theta) = \prod_{i=1}^{a} q_i(\theta_i'|\theta)$

$$q_i(\theta_i'|\theta) = \text{Categorical}\left(\text{Softmax}\left(\frac{1}{2}\nabla U(\theta)_i(\theta_i' - \theta_i) - \frac{(\theta_i' - \theta_i)^2}{2\alpha}\right)\right)$$

cheaply computed in parallel

$$q(\theta'|\theta) = \frac{\exp\left(-\frac{1}{2\alpha} \left\|\theta' - \theta - \frac{\alpha}{2} \nabla U(\theta)\right\|_{2}^{2}\right)}{Z_{\Theta}(\theta)}$$

- Langevin proposal is applicable to any kind of spaces
 - When $\Theta = \mathbb{R}^d$, recover the Gaussian proposal
 - When Θ is a discrete domain, obtain a gradient-based discrete proposal
- Coordinatewise factorization $q(\theta'|\theta) = \prod_{i=1}^{\infty} q_i(\theta_i'|\theta)$

$$q_i(\theta_i'|\theta) = \text{Categorical}\left(\text{Softmax}\left(\frac{1}{2}\nabla U(\theta)_i(\theta_i' - \theta_i) - \frac{(\theta_i' - \theta_i)^2}{2\alpha}\right)\right)$$

$$q_i(\theta_i'|\theta) = \text{Categorical}\left(\text{Softmax}\left(\frac{1}{2}\nabla U(\theta)_i(\theta_i' - \theta_i) - \frac{(\theta_i' - \theta_i)^2}{2\alpha}\right)\right)$$

$$q_i(\theta_i'|\theta) = \text{Categorical}\left(\text{Softmax}\left(\frac{1}{2}\nabla U(\theta)_i(\theta_i' - \theta_i) - \frac{(\theta_i' - \theta_i)^2}{2\alpha}\right)\right)$$

$$q_i(\theta_i'|\theta) = \text{Categorical}\left(\text{Softmax}\left(\frac{1}{2}\nabla U(\theta)_i(\theta_i' - \theta_i) - \frac{(\theta_i' - \theta_i)^2}{2\alpha}\right)\right)$$

update all coordinates based on gradient info in parallel

$$q_i(\theta_i'|\theta) = \text{Categorical}\left(\text{Softmax}\left(\frac{1}{2}\nabla U(\theta)_i(\theta_i' - \theta_i) - \frac{(\theta_i' - \theta_i)^2}{2\alpha}\right)\right)$$

update all coordinates based on gradient info in parallel

Samplers: discrete unadjusted Langevin algorithm (DULA) discrete Metropolis-adjusted Langevin algorithm (DMALA)

Convergence Analysis

Theorem (informal): The asymptotic bias of DULA's stationary distribution is zero for log-quadratic distributions and is small for distributions that are close to being log-quadratic

• With stochastic gradients

With stochastic gradients

Theorem (informal): When the variance of the stochastic gradient or the stepsize decreases, the stochastic DLP in expectation will be closer to the full-batch DLP

With stochastic gradients

Theorem (informal): When the variance of the stochastic gradient or the stepsize decreases, the stochastic DLP in expectation will be closer to the full-batch DLP

With preconditioners

$$q_i(\theta_i'|\theta) \propto \exp\left(\frac{1}{2}\nabla U(\theta)_i(\theta_i'-\theta_i) - \frac{(\theta_i-\theta_i')^2}{2\alpha g_i}\right)$$

Sampling From Restricted Boltzmann Machines

DULA and DMALA converge faster to the target distribution

We propose Discrete Langevin Proposal (DLP) for discrete distributions

- We propose Discrete Langevin Proposal (DLP) for discrete distributions
- We develop several variants with DLP, including unadjusted,
 Metropolis-adjusted, stochastic, and preconditioned versions

- We propose Discrete Langevin Proposal (DLP) for discrete distributions
- We develop several variants with DLP, including unadjusted,
 Metropolis-adjusted, stochastic, and preconditioned versions
- We prove the asymptotic convergence of DLP under log-quadratic and general distributions

- We propose Discrete Langevin Proposal (DLP) for discrete distributions
- We develop several variants with DLP, including unadjusted,
 Metropolis-adjusted, stochastic, and preconditioned versions
- We prove the asymptotic convergence of DLP under log-quadratic and general distributions
- We provide a thorough empirical evaluation including deep EBMs, binary DNNs and text generation
 - arXiv.org https://arxiv.org/abs/2206.09914
 - https://github.com/ruqizhang/discrete-langevin