

Improving Screening Processes via Calibrated Subset Selection

Luke Lequn Wang

Joint work with Thorsten Joachims and Manuel Gomez Rodriguez

Green Qualified, Red Unqualified

For ease of presentation, we use an over-simplification of gender.

a pool of candidates

Multi-Stage Selection Processes: More **Applications**

Medical Trials

Paper Reviews

Recommender Systems

COVID-19 ICML 2022 NETFLIX

1. Construct a classifier.

- 1. Construct a classifier.
- 2. Apply a threshold rule.

- 1. Construct a classifier.
- 2. Apply a threshold rule.

How to select the threshold?

Objectives of Screening: Enough Qualified

ranking by quality scores (left higher) threshold no enough qualified candidates

Objectives of Screening: Small Shortlists

ranking by quality scores (left higher)

Objectives of Screening: Diversity

ranking by quality scores (left higher) threshold unfair to female candidates

Objectives of Screening: Diversity

ranking by quality scores (left higher) threshold Possible reason: classifier is unfair to female candidates less accurate for female applicants.

Individual Guarantee on "Enough Qualified" and "Small Shortlists"

all possible pools of candidates

• • •

largest thresholds such that we select enough (2)

Individual Guarantee on "Enough Qualified" and "Small Shortlists"

all possible pools of candidates

qualified candidates for each pool

Impossible! (without unreasonable assumption)

largest thresholds such that we select enough (2)

Marginal Guarantee on "Enough Qualified" and "Small Shortlists"

all possible pools of candidates

largest threshold such that we select enough (2)

Near-Optimal Threshold: Calibrated Subset Selection (CSS) Algorithm

a given quality classifier

Near-Optimal Threshold: Calibrated Subset Selection (CSS) Algorithm

a given quality classifier

lower confidence bound on the number of qualified candidates that holds for every threshold

Near-Optimal Threshold: Calibrated Subset Selection (CSS) Algorithm

lower confidence bound on the number of qualified candidates that holds for every threshold

Near-Optimality of CSS

Proposition (informal). *Under mild assumptions, for any* $\alpha \in (0,1)$, with probability at least $1-\alpha$, CSS selects at most

$$rac{m}{n} + m\sqrt{2\ln(2/lpha)/n}$$
 m: number of candidates n: calibration data size

more qualified candidates than the optimal threshold.

CSS Diversity Algorithm

Ranking: by quality scores (left higher)

For More Information Including Experiments

- Paper: https://arxiv.org/abs/2202.01147
- Code: https://github.com/LequnWang/Improve-Screening-via-Calibrated-Subset-Selection
- Come to Our Poster!

Thank you!