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Multi-Stage Selection Processes: Hiring Example

Green Qualified, Red Unqualified
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Multi-Stage Selection Processes: Hiring Example
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For ease of presentation, we use an over-simplification of gender.
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Multi-Stage Selection Processes: Hiring Example

Green Qualified, Red Unqualified
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Multi-Stage Selection Processes: More
Applications

Medical Trials Paper Reviews Recommender Systems
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Two-Step Screening




Two-Step Screening

1. Construct a classifier.

ranking by quality scores (left higher)
0.7 0.7 0.6 0.6 0.4 0.4 0.3 0.3 0.2 0.2

oo PP orooloormo o aao




Two-Step Screening

1. Construct a classifier.
2. Apply a threshold rule.

ranking by quality scores (left higher)
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Two-Step Screening

1. Construct a classifier.

?
>, Apply a threshold rule. T1OW 1O select the threshold:

ranking by quality scores (left higher)
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Objectives of Screening: Enough Qualified

ranking by quality scores (left higher)
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Objectives of Screening : Small Shortlists

ranking by quality scores (left higher)
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Objectives of Screening : Diversity

ranking by quality scores (left higher)
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Objectives of Screening : Diversity

ranking by quality scores (left higher)
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Possible reason: classifier is
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Individual Guarantee on “Enough Qualified”
and “Small Shortlists”

all possible pools of candidates largest thresholds such that we select enough (2)

qualified candidates for each pool
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Individual Guarantee on “Enough Qualified”
and “Small Shortlists”

all possible pools of candidates largest thresholds such that we select enough (2)

qualified candidates for each pool
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Impossible! (without unreasonable assumption)



Marginal Guarantee on “Enough Qualified”
and “Small Shortlists”

all possible pools of candidates largest threshold such that we select enough (2)

qualified candidates in expectation over the pools
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Near-Optimal Threshold: Calibrated Subset
Selection (CSS) Algorithm

calibration data ‘a given quality classifier ‘
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Near-Optimal Threshold: Calibrated Subset
Selection (CSS) Algorithm

calibration data ‘a given quality classifier ‘
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that holds for every threshold
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Near-Optimal Threshold: Calibrated Subset
Selection (CSS) Algorithm

calibration data ‘a given quality classifier ‘
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lower confidence bound on the largest threshold such that
number of qualified candidates =, | the lower confidence bound is
that holds for every threshold larger than the target
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Near-Optimality of CSS

Proposition (informal). Under mild assumptions, for any o € (0,1),
with probability at least 1—« , CSS selects at most

m: number of candidates

m
g -+ m\/2 ln(Z/a)/n n: calibration data size

more qualified candidates than the optimal threshold.
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CSS Diversity Algorithm

Ranking: by quality scores (left higher)
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For More Information Including Experiments

* Paper: https://arxiv.org/abs/2202.01147

* Code: https://github.com/LequnWang/Improve-Screening-via-
Calibrated-Subset-Selection

e Come to Our Poster!
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