Exact Optimal Accelerated Complexity for Fixed-Point Iterations

Jisun Park¹ and Ernest K. Ryu¹

Long Presentation
International Conference on Machine Learning, 2022

¹Department of Mathematical Sciences, Seoul National University

Fixed-point iteration

Fixed-point iteration with $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$ computes

$$x_{k+1} = \mathbb{T}x_k$$

with some starting point $x_0 \in \mathbb{R}^n$.

Rubric: Formulate solution as fixed point of an operator and perform the fixed-point iteration.

Ubiquitous throughout applied mathematics, science, engineering, and machine learning. However, the computational complexity of the abstract fixed-point iteration has not been studied extensively.

Question) What is the optimal (accelerated) iteration complexity of fixed-point iterations?

Fixed-point problem ⇔ Monotone inclusion problem

Our analysis relies on the following equivalence.

Fixed-point problem

$$\inf_{y\in\mathbb{R}^n}\quad y=\mathbb{T} y$$

with $1/\gamma$ -Lipschitz $\mathbb{T}\colon\mathbb{R}^n\to\mathbb{R}^n$ (with $\gamma\geq 1$) is equivalent to monotone inclusion problem

$$find
_{x \in \mathbb{R}^n}
0 \in \mathbb{A}x$$

with maximal μ -strongly monotone $\mathbb{A} \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ (with $\mu \geq 0$).

Lemma

With $\gamma = \frac{1}{1+2\mu}$, there is a one-to-one correspondence

$$\mathbb{A} = \left(\mathbb{T} + \frac{1}{\gamma}\mathbb{I}\right)^{-1} \left(1 + \frac{1}{\gamma}\right) - \mathbb{I} \quad \Leftrightarrow \quad \mathbb{T} = \left(1 + \frac{1}{1 + 2\mu}\right)\mathbb{J}_{\mathbb{A}} - \frac{1}{1 + 2\mu}\mathbb{I}$$

and x_{\star} is a zero of \mathbb{A} if and only if it is a fixed point of \mathbb{T} .

Exact optimal methods (upper bound)

Complexity lower bound

Acceleration under Hölder-type growth condition

Exact optimal methods

Optimal Contractive Halpern (OC-Halpern):

$$y_k = \left(1 - \frac{1}{\varphi_k}\right) \mathbb{T} y_{k-1} + \frac{1}{\varphi_k} y_0$$
 (OC-Halpern)

where \mathbb{T} is $1/\gamma$ -contractive, $\varphi_k = \sum_{i=0}^k \gamma^{2i}$, and y_0 is a starting point.

Optimal Strongly-monotone Proximal Point Method (OS-PPM):

$$x_{k} = \mathbf{J}_{\mathbf{A}} y_{k-1} \tag{OS-PPM}$$

$$y_{k} = x_{k} + \frac{\varphi_{k-1} - 1}{\varphi_{k}} (x_{k} - x_{k-1}) - \frac{2\mu \varphi_{k-1}}{\varphi_{k}} (y_{k-1} - x_{k}) + \frac{(1 + 2\mu)\varphi_{k-2}}{\varphi_{k}} (y_{k-2} - x_{k-1})$$

where $\mathbb A$ is maximal μ -strongly monotone, $\varphi_k = \sum_{i=0}^k (1+2\mu)^{2i}$, $\varphi_{-1} = 0$, and $x_0 = y_0 = y_{-1}$ is a starting point.

Exact optimal methods

These two methods are equivalent:

$$y_k = \left(1 - \frac{1}{\varphi_k}\right) \mathbb{T} y_{k-1} + \frac{1}{\varphi_k} y_0$$
 (OC-Halpern)

$$\begin{split} x_k &= \mathbb{J}_{\mathbb{A}} y_{k-1} \\ y_k &= x_k + \frac{\varphi_{k-1} - 1}{\varphi_k} (x_k - x_{k-1}) - \frac{2\mu \varphi_{k-1}}{\varphi_k} (y_{k-1} - x_k) + \frac{(1 + 2\mu)\varphi_{k-2}}{\varphi_k} (y_{k-2} - x_{k-1}) \end{split}$$

Lemma

The y_k -iterates of (OC-Halpern) and (OS-PPM) are identical provided they start from the same initial point y_0 .

Accelerated rate (exact optimal)

Theorem

Let $A: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximal μ -strongly monotone with $\mu \geq 0$. (OS-PPM) exhibits the rate

$$\|\tilde{\mathbf{A}}x_N\|^2 \le \left(\frac{1}{\sum_{k=0}^{N-1} (1+2\mu)^k}\right)^2 \|y_0 - x_\star\|^2,$$

where $\tilde{\mathbb{A}}x_N = x_{N-1} - x_N$.

This is the fastest rate. When $\mu = 0$, the rate

$$\|\tilde{\mathbb{A}}x_N\|^2 \le \mathcal{O}(1/N^2)$$

is faster than the $\mathcal{O}(1/N)$ rate for (unaccelerated) PPM.

 $[\]mathcal{O}(1/N^2)$ rate due to (Kim 2021). Rate for $\mu>0$ is new.

Kim, Accelerated proximal point method for maximally monotone operators, MPA, 2021.

Accelerated rate (exact optimal)

Corollary

Let $\mathbb{T} \colon \mathbb{R} \to \mathbb{R}$ be γ^{-1} -contractive with $\gamma \geq 1$. (OC-Halpern) exhibits the rate

$$||y_N - \mathbb{T}y_N||^2 \le \left(1 + \frac{1}{\gamma}\right)^2 \left(\frac{1}{\sum_{k=0}^N \gamma^k}\right)^2 ||y_0 - y_\star||^2.$$

This is the fastest rate. When $\gamma = 1$, the rate

$$||y_N - \mathbb{T}y_N||^2 \le \mathcal{O}(1/N^2)$$

is faster than the $\mathcal{O}(1/N)$ rate for plain (KM) fixed-point iteration.

 $[\]mathcal{O}(1/N^2)$ rate due to (Lieder 2021). Rate for $\gamma<1$ is new. Lieder, On the convergence rate of the Halpern-iteration. OPTL, 2021. Exact optimal methods (upper bound)

Exact optimal methods (upper bound)

Complexity lower bound

Acceleration under Hölder-type growth condition

Exact optimality

Theorem

For $n \geq N+1$, there exists an $1/\gamma$ -Lipschitz operator $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$ with a fixed point $y_\star \in \operatorname{Fix} \mathbb{T}$ such that

$$||y_N - \mathbb{T}y_N||^2 \ge \left(1 + \frac{1}{\gamma}\right)^2 \left(\frac{1}{\sum_{k=0}^N \gamma^k}\right)^2 ||y_0 - y_\star||^2$$

for any iterates $\{y_k\}_{k=0}^N$ satisfying

$$y_k \in y_0 + \text{span}\{y_0 - \mathbb{T}y_0, y_1 - \mathbb{T}y_1, \dots, y_{k-1} - \mathbb{T}y_{k-1}\}$$

for k = 1, ..., N.

Lower bound matches upper bound exactly.

 $[\]Theta(1/N^2)$ lower bound for $\gamma=1$ due to (Diakonikolas 2020), but our bound improves the constant by a factor of about 80. Lower bound for $\gamma<1$ is new. Diakonikolas, Halpern iteration for near-optimal and parameter-free monotone inclusion and strong solutions to variational inequalities, COLT, 2020.

Construction of worst-case operator

Lemma

 \mathbb{T} is $\frac{1}{\gamma}$ -contractive if and only if $\mathbb{G} = \frac{\gamma}{1+\gamma}(\mathbb{I} - \mathbb{T})$ is $\frac{1}{1+\gamma}$ -averaged.

Lemma

Let R > 0. Define $\mathbb{N}, \mathbb{G} \colon \mathbb{R}^{N+1} \to \mathbb{R}^{N+1}$ as

$$\mathbb{N}(x_1, x_2, \dots, x_N, x_{N+1}) = (x_{N+1}, -x_1, -x_2, \dots, -x_N) - \frac{1 + \gamma^{N+1}}{\sqrt{1 + \gamma^2 + \dots + \gamma^{2N}}} Re_1$$

and $\mathbb{G} = \frac{1}{1+\gamma} \mathbb{N} + \frac{\gamma}{1+\gamma} \mathbb{I}$. That is,

$$\mathbb{G}x = \frac{1}{1+\gamma} \begin{bmatrix} \gamma & 0 & \cdots & 0 & 1 \\ -1 & \gamma & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \gamma & 0 \\ 0 & 0 & \cdots & -1 & \gamma \end{bmatrix} x - \frac{1}{1+\gamma} \frac{1+\gamma^{N+1}}{\sqrt{1+\gamma^2+\cdots+\gamma^{2N}}} Re_1.$$

Then $\mathbb N$ is nonexpansive, and $\mathbb G$ is $\frac{1}{1+\gamma}$ -averaged.

Exact optimal methods (upper bound)

Complexity lower bound

Acceleration under Hölder-type growth condition

Monotone \supset Uniform mon. \supset Strong mon.

(OS-PPM) provides an acceleration under monotonicity or strong monotonicity. In practice, these assumptions are often too weak or too strong, respectively. Uniform monotonicity is a practical middle ground.

 $\mathbb{A}\colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is uniformly monotone with parameters $\mu>0$ and $\alpha>1$ if it is monotone and

$$\langle \mathbb{A}x, x - x_{\star} \rangle \ge \mu \|x - x_{\star}\|^{\alpha + 1}$$

for any $x \in \mathbb{R}^n$ and $x_* \in \operatorname{Zer} \mathbb{A}$. ($\alpha = \infty$ corresponds monotonicity and $\alpha = 1$ to strong monotonicity.)

We also refer to this as a Hölder-type growth condition, as it resembles the Hölderian error bound condition with function-value suboptimality replaced by $\langle \mathbb{A}x, x-x_\star \rangle$.

PPM under uniform monotonicity

Under uniform monotonicity, we first establish the rate the unaccelerated proximal point method (PPM)

$$x_{k+1} = \mathbb{J}_{\mathbb{A}} x_k.$$

Theorem

Let $\mathbb{A} \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be uniformly monotone with parameters $\mu > 0$ and $\alpha > 1$. Then

$$\|\tilde{\mathbb{A}}x_N\|^2 \le \mathcal{O}\left(\frac{1}{N^{\frac{\alpha+1}{\alpha-1}}}\right)$$

where $\tilde{\mathbb{A}}x_N = x_{N-1} - x_N$.

Restarted OS-PPM

We accelerate the rate using (OS-PPM) and restarting^{\dagger}. Restarted OS-PPM:

$$\tilde{x}_0 = \mathbb{J}_{\mathbf{A}} x_0$$
 (OS-PPM₀^{res})
 $\tilde{x}_k \leftarrow \mathbf{OS-PPM}_0(\tilde{x}_{k-1}, t_k), \qquad k = 1, \dots, R,$

where ${\bf OS\text{-}PPM}_0(\tilde{x}_{k-1},t_k)$ is the execution of t_k iterations of (OS-PPM) with $\mu=0$ starting from \tilde{x}_{k-1} .

Theorem

Let $\mathbb{A} \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be uniformly monotone with parameters $\mu > 0$ and $\alpha > 1$. There is a restarting schedule t_1, \ldots, t_R such that

$$\|\tilde{\mathbb{A}}x_N\|^2 \leq \mathcal{O}\left(\frac{1}{N^{\frac{2\alpha}{\alpha-1}}}\right) = \mathcal{O}\left(\frac{1}{N^{\frac{\alpha+1}{\alpha-1}+1}}\right).$$

[†]Nesterov, Gradient methods for minimizing composite functions, *MPA*, 2013 [†]Roulet and d'Aspremont, Sharpness, restart, and acceleration, *SIOpt*, 2020.

Exact optimal methods (upper bound)

Complexity lower bound

Acceleration under Hölder-type growth condition

Experiments

Illustrative 2D toy examples

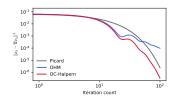
Toy examplex provide insight into acceleration mechanism.

 $\frac{1}{\gamma}\text{-contractive }\mathbb{T}_{\theta}\colon\mathbb{R}^2\to\mathbb{R}^2$ and a maximal $\mu\text{-strongly monotone }\mathbb{M}\colon\mathbb{R}^2\to\mathbb{R}^2$

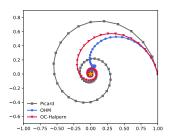
$$\begin{split} & \mathbb{T}_{\theta} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{\gamma} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ & \mathbb{M} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{pmatrix} \frac{1}{N-1} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} \mu & 0 \\ 0 & \mu \end{bmatrix} \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \end{split}$$

with $\gamma=1/0.95=1.0526,~\mu=0.035,$ and $\theta=15^{\circ}.$

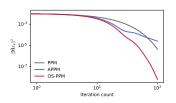
Illustrative 2D toy examples



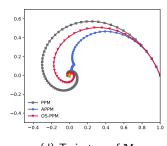
(a) Fixed-point residual of \mathbb{T}_{θ}



(c) Trajectory of \mathbb{T}_{θ} Experiments



(b) Resolvent residual norm of ${\mathbb M}$



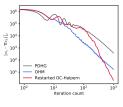
(d) Trajectory of $\ensuremath{\mathbb{M}}$

Real-world problems

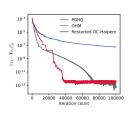
Experiment on several real world problems.

(a) minimize
$$\frac{1}{2} ||Ex - b||^2 + \lambda ||Dx||_1$$
, (b) minimize $||\mathbf{m}||_{1,1} = \sum_{i=1}^n \sum_{j=1}^n |m_{x,ij}| + |m_{y,ij}|$ subject to $\operatorname{div}(\mathbf{m}) + \rho_1 - \rho_0 = 0$,

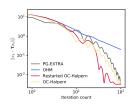
(c) minimize
$$\frac{1}{n}\sum_{i=1}^n\|A_{(i)}x-b_{(i)}\|^2+\lambda\|x\|_1.$$



(a) CT imaging



(b) Earth mover's distance (c)



(c) Decentralized compressed sensing

In all three applications, restarting provides an acceleration.

Conclusion

- (i) Classical fixed-point iteration is suboptimal.
- (ii) Appropriate use of anchoring yields acceleration and is exactly optimial.
- (iii) With restarting, we demonstrate a practical benefit in a wide range of setups.