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Definition. A canonical SCM is a SCM  whereM = ⟨V, U, ℱ, P(U)⟩

• Every  is decided by a function  taking values 
in a discrete and finite domain .

V ∈ V v ← fV(paV, uV)
ΩV

• Every  are drawn from a discrete domain  with cardinalityU ∈ U ΩU

|ΩU| = ∏
V∈C(U)

|ΩPaV
| × |ΩV|

where  is the c-component in  that covers .C(U) G U

Two endogenous variables are in the same c-component 
if and only if they are connected by a bi-directed path.
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∀x, y ⊆ v
PN(y |do(x))

𝒫

P(x, y, z)
P(y, z |do(x))
P(y, x |do(z))



Partial Identification of Causal 
Effects: Revisit

6

Task. Given the observational distribution  in 
an arbitrary causal diagram , bound  
for any .

P(v)
G P(y |do(x))

X, Y ⊆ V
XZ Y

U2U1



Partial Identification of Causal 
Effects: Revisit

6

Task. Given the observational distribution  in 
an arbitrary causal diagram , bound  
for any .

P(v)
G P(y |do(x))

X, Y ⊆ V

• We assume that the domain of  is discrete and finite.V
XZ Y

U2U1



Partial Identification of Causal 
Effects: Revisit

6

Task. Given the observational distribution  in 
an arbitrary causal diagram , bound  
for any .

P(v)
G P(y |do(x))

X, Y ⊆ V

• We assume that the domain of  is discrete and finite.V

• Let  denote the set of all canonical SCMs compatible with .𝒩 G

XZ Y

U2U1



Partial Identification of Causal 
Effects: Revisit

6

Task. Given the observational distribution  in 
an arbitrary causal diagram , bound  
for any .

P(v)
G P(y |do(x))

X, Y ⊆ V

• We assume that the domain of  is discrete and finite.V

• Let  denote the set of all canonical SCMs compatible with .𝒩 G

• Given ,  is bounded in  where:P(v) P(y |do(x)) [a, b]

XZ Y

U2U1



Partial Identification of Causal 
Effects: Revisit

6

a = min PN(y |do(x)),
b = max PN(y |do(x)) .

∀N ∈ 𝒩,
PN(v) = P(v) .s.t.

Task. Given the observational distribution  in 
an arbitrary causal diagram , bound  
for any .

P(v)
G P(y |do(x))

X, Y ⊆ V

• We assume that the domain of  is discrete and finite.V

• Let  denote the set of all canonical SCMs compatible with .𝒩 G

• Given ,  is bounded in  where:P(v) P(y |do(x)) [a, b]

XZ Y

U2U1



Partial Identification of Causal 
Effects: Revisit

6

a = min PN(y |do(x)),
b = max PN(y |do(x)) .

∀N ∈ 𝒩,
PN(v) = P(v) .s.t.

Task. Given the observational distribution  in 
an arbitrary causal diagram , bound  
for any .

P(v)
G P(y |do(x))

X, Y ⊆ V

• We assume that the domain of  is discrete and finite.V

• Let  denote the set of all canonical SCMs compatible with .𝒩 G

• Given ,  is bounded in  where:P(v) P(y |do(x)) [a, b]

XZ Y

U2U1



Partial Identification of Causal 
Effects: Revisit

6

a = min PN(y |do(x)),
b = max PN(y |do(x)) .

∀N ∈ 𝒩,
PN(v) = P(v) .s.t.

This problem is reducible to an equivalent polynomial 
optimization program

Task. Given the observational distribution  in 
an arbitrary causal diagram , bound  
for any .

P(v)
G P(y |do(x))

X, Y ⊆ V

• We assume that the domain of  is discrete and finite.V

• Let  denote the set of all canonical SCMs compatible with .𝒩 G

• Given ,  is bounded in  where:P(v) P(y |do(x)) [a, b]

XZ Y

U2U1



Example: Non-IV

7

XZ Y

U2U1

• 


• 


• Data - 


• Query - 

X, Y, Z ∈ {0,1}

U1, U2 ∈ ℝ

P(x, y, z)

P(y |do(x))

N = 1000

opt
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• We introduce canonical causal models that could represent all 
interventional distributions in an arbitrary causal diagram.

• It reduces partial causal identification to equivalent polynomial 
programs.

• What is in the paper (Contributions):

• Generalized canonical SCMs that could represent all 
counterfactual distributions in a causal digram.

• Effective posterior sampling methods to approximate 
optimal bounds over unknown counterfactual probabilities 
from observational and experimental data.


