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Canonical Causal Models

Definition. A canonical SCM isa SCM M = (V,U, %, P(U)) where

o Every V € Vis decided by a function v « f,(pa,, uy) taking values
in a discrete and finite domain €2y,

e Every U € U are drawn from a discrete domain £2;; with cardinality

Q)= ] 19p,,l %I
VeCU)

where C(U) is the c-component in G that covers U.

Two endogenous variables are in the same c-component
If and only if they are connected by a bi-directed path.
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This problem is reducible to an equivalent polynomial
optimization program
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Conclusions

 We introduce canonical causal models that could represent all
interventional distributions in an arbitrary causal diagram.

* |t reduces partial causal identification to equivalent polynomial
programs.

e What is in the paper (Contributions):

 Generalized canonical SCMs that could represent all
counterfactual distributions in a causal digram.

o Effective posterior sampling methods to approximate
optimal bounds over unknown counterfactual probabillities
from observational and experimental data.



