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Retain the most information:

J(e) = —e' Se+ Z |w; —w [|* (1
1=1
Direction of the main direction:
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Get the objective function

glp,e\,n)=e' Se—\Ne'e—1)+ u(—Ve+n?), where A#0,u>0 (3)



The cost of computing e of Se = e is 0(d?).
For fast computing:
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Algorithm 1 Eigen-Reptile

Input: Distribution over tasks P(7), outer step size

a.
1: Initialize meta-parameters ¢
2: while not converged do
3 W=[|l,yr=0
4:  Sample batch of tasks {7;} 2., ~ P(T)
5:  for each task 7; do
6 b, =¢

7 Sample train set D;,.,;,, of T;

8 for j =1,2.3.....ndo

9: d)-z’ = Uj(Dtrairh ¢1)

10: W appends W ; = flatten(rbf)

11: end for

12: Mean centering, W = W —w, w € R**!

13: Compute matrix A and eigenvector matrix P of
scatter matrix W ' W

14: Eigenvalues Ay > Ay > -+ > A, In 11

15: Compute matrix of WW ', P = WP

16: Let the eigenvector corresponding to A, be a unit
vector, || e! ||3=1

17: forj =1,2,3,....n—1do

18: V=1Vv-+ (W:,j-H —_ W;.j)e}

19: end for

20: el = ﬁ x e}

21: Calculate the approximate direction of task-
specific gradient update V:

22: V = LN>2J ZZLZ{?J W ivi— W

23: ife! -V <0 then

24: el = —e}

25: end if

26:  end for

27:  Average the main directions to get
é=(1/B)L, el

28:  Update meta-parameters ¢ «— ¢ + 3 x v/B x e

29: end while




Theorem 1:
Alleviate sampling noise with the main direction.
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Theorem 2:
More accurate main direction with ISPL.
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Compare with other directions
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Figure 4. Loss of different update direction.



Experiments on clean Mini-Imagenet and
CIFAR-FS

Table 1. Accuracy of FSL on Mini-Imagenet N-way K-shot. The + shows 95% confidence interval over tasks. The number in (-) denotes
the number of filters.

Algorithm 5-way 1-shot 5-way 5-shot Table 2. Few Shot Classification on CIFAR-FS N-way K-shot
MAML (Finn et al., 2017) 48.70 £ 1.84%  63.11 & 0.92% accuracy. The £ shows 95% confidence interval over tasks.
FOML (Finn et al., 2017) 48.07+1.75%  63.15+0.91% : i ] ]
GNN (Gidaris & Komodakis, 2018) 50.30% 66.40% Algorithm 5-way I-shot 3-way 5-sho
TAML (Jamal & Qi, 2019) 51.77 £ 1.86% 65.60 £+ 0.93%
Meta-dropout (Lee et al., 2019) 51.93 £ 0.67% 67.42 £ 0.52% MAML 58.90 £1.90% 71.50 £ 1.00%
Warp-MAML (Flennerhag et al., 2020) 52.30 £ 0.80% 68.4 £ 0.60% PROTO NET 55.50 £ 0.70% 72.00 £ 0.60%
MC (128) (Park & Oliva, 2020) 54.08 +0.93%  67.99 £0.73% GNN 61.90% 75.30%
sparse-MAML (Von Oswald et al., 2021)  51.04 + 0.59% 68.05 + 0.84%
MeTAL (Baik et al., 2021) 52.63 +£0.37%  70.52 + 0.29% ECM 55.14 £ 0.48% 71.66 +0.39%
MixtFSL (Afrasiyabi et al., 2021 52.82 £0.63%  70.67 £ 0.57% .
RIXt 1 3(2) f;SW; 11 ; al 2018)) 49.97 £0 32?0 65.99 + 0.58% 0 Reptile 830+1.20% 7545 0.55%
eptile (32) (Nichol et al., . .32% . .58% . .
Eigen-Reptile (32) 51.80 £ 0.90%  68.10 = 0.50% Eigen-Reptile  61.90 + 1.40% 78.30 £ 0.50%

Eigen-Reptile (64) 53.25 +0.45% 69.85 £ 0.85%




Experiments on corrupted Mini-Imagenet

Table 3. Average test accuracy of 5-way 1-shot on the Mini-Imagenet with label noise. S and AS denotes symmetric and asymmetric
noise, respectively. All methods are trained with early stopping to against noisy labels (Li et al., 2020b), especially when p = 0.5, the
results of 20000 or more iterations for Reptile are only 20% that equivalent to random guessing. Besides, for a fair comparison, we force
all methods to get similar results when p = 0 to compare the robustness when p is higher. Therefore, the reported results are lower than
that of Table 1.

p=0.1 p=20.2 p=0.5
S AS S AS S AS

MeTAL (Baik et al., 2021)  47.57%  44.64%  46.44%  40.67%  45.02%  27.05%  41.53%
Reptile (Nichol et al., 2018)  47.64%  46.08%  47.30%  43.49%  45.51%  23.33%  42.03%
Reptile+ISPL 47.23%  46.50%  47.00%  43.70%  45.42%  21.83%  41.09%
Eigen-Reptile 47.87% A7T18%  4A7.42% 45.01%  46.50% @ 27.23%  42.29%
Eigen-Reptile+ISPL 47.26%  47.20% 47.24%  45.49% 46.83% 28.68% 43.71%

Algorithm p=20.0
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