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* Andrychowicz et. al, Learning to Learn by Gradient Descent by Gradient Descent, Neurips 2016  
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*Heaton, et. al, Safeguarded Learned Convex Optimization, arXiv:2003.01880



  

Compared To Alternative*

● Simpler Algorithm
● Fewer Computation of Gradients
● Works better in Practice

*Heaton, et. al, Safeguarded Learned Convex Optimization, arXiv:2003.01880
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Concluding Remarks

● Guard can be used with any learned optimizer and fallback 
optimizer

● Inherits the convergence guarantee of the fallback optimizer
● Empirically retains the performance of learned optimizer



  



  

Thank you 

● Come see our poster (ID 17027)
https://icml.cc/virtual/2022/poster/17027

● https://arxiv.org/abs/2201.12426
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