Correlated quantization for distributed mean estimation and optimization

Ananda Theertha Suresh, Ziteng Sun, Jae Hun Ro, and Felix Yu Google Research New York

Problem statement

High dimensional mean estimation with communication constraints $x_i \in \mathbb{R}^d$ X_n x_1 x_2 **Goal:** estimate $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

What is the best estimate for a given communication cost?

Motivation: distributed optimization

- Distributed optimization uses mean estimation as subroutine
 - At each round users send gradients / model updates to the server
 - Server aggregates gradients to compute the new model
 - Communication cost is a bottleneck

mation as subroutine model updates to the server ate the new model

Outline

- One-dimensional mean estimation (this talk) \bigcirc
 - Existing algorithms: min-max bounds
 - New algorithm: instance-specific bounds
 - Optimality
- Extensions to high dimensions
- Applications to distributed optimization \bigcirc

One-bit one-dimensional mean estimation

 x_2

 $Q_2(x_2)$

 x_1

 $Q_1(x_1)$

Standard stochastic rounding

0.5

Users quantize independently

0.5

 $Q_i(x_i) = B(x_i) = \begin{cases} 1 \text{ with prob. } x_i \\ 0 \text{ with prob. } 1 - x_i \end{cases}$

What if data is more favorable?

Standard stochastic quantization

$E\left(\frac{1}{n}\sum_{i=1}^{n} \mathcal{L}\right)$

$$Q_i(x_i) - \bar{x} \bigg)^2 \lesssim \frac{1}{n}$$

Stochastic rounding is min-max optimal up to constants

What if data is more favorable?

Standard stochastic quantization

Stochastic rounding is min-max optimal up to constants

• Suppose points are close-by e.g., $x_i \sim N(0.5, 0.0001)$

- Can we improve the estimate?
- Can we provide instance-specific bounds?

$$Q_i(x_i) - \bar{x} \bigg)^2 \lesssim \frac{1}{n}$$

Correlated quantizer

 $Q_i(x_i) = B(x_i) = \begin{cases} 1 \text{ with prob. } x_i \\ 0 \text{ with prob. } 1 - x_i \end{cases}$

0.5

Correlated quantization: If one user rounds up, other users tend to round down

Results on correlated stochastic quantizer

Theorem: For any $x_1, x_2, ..., x_n$ such that each $E\left(\frac{1}{n}\sum_{i=1}^n Q_i(x_i) - w_{i-1}\right)$ where $\sigma_{\text{md}} = \frac{1}{n}\sum_{i=1}^n |x_i - \bar{x}|$.

$$\operatorname{ch} x_{i} \in [0,1],$$

$$-\bar{x} \right)^{2} \lesssim \frac{\sigma_{\mathrm{md}}}{n} + \frac{1}{n^{2}}$$

Results on correlated stochastic quantizer

Theorem: For any $x_1, x_2, ..., x_n$ such that each $x_i \in [0,1]$,

where

- A simple modification of the stochastic rounding algorithm
- Does not require prior knowledge of σ_{md}
- Data dependent bound

Optimality of the correlated quantizer

Theorem: For any one bit quantizer and any $\sigma_{\text{md}'}$ there exists x_1, x_2, \dots, x_n such that $\sigma_{\text{md}} = \frac{1}{n} \sum_{i=1}^n |x_i - \bar{x}|$ and

 $E\left(\frac{1}{n}\sum_{i=1}^{n}Q_{i}\right)$

$$\left(x_i\right) - \bar{x}\right)^2 \gtrsim \frac{\sigma_{\rm md}}{n}$$

Thank you! Poster tonight @ Hall E #1111

- One-bit one-dimensional mean estimation 0
 - Existing algorithms: min-max bounds
 - New algorithm: instance-specific bounds
 - Optimality
- Extensions to multiple bits \bigcirc
- Extensions to high dimensions 0
- Applications to distributed optimization

