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High dimensional mean estimation with communication constraints

What is the best estimate for a given communication cost?

Goal: estimate



Motivation: distributed optimization

Distributed optimization uses mean estimation as subroutine
At each round users send gradients / model updates to the server
Server aggregates gradients to compute the new model
Communication cost is a bottleneck



Outline

One-dimensional mean estimation (this talk)
Existing algorithms: min-max bounds
New algorithm: instance-specific bounds
Optimality

Extensions to high dimensions
Applications to distributed optimization



One-bit one-dimensional mean estimation

1
n

n

∑
i=1

Qi(xi)

Goal: estimate x̄ =
1
n

n

∑
i=1

xi

x2
xi ∈ [0,1]x1

xn

Q1(x1) Q2(x2) Qi(xi) ∈ {0,1} Qn(xn)



Standard stochastic rounding
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Users quantize independently



What if data is more favorable?

Standard stochastic quantization
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Stochastic rounding is min-max optimal up to constants



What if data is more favorable?

Suppose points are close-by e.g., 
Can we improve the estimate?
Can we provide instance-specific bounds?

xi ∼ N(0.5,0.0001)

Standard stochastic quantization
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Stochastic rounding is min-max optimal up to constants



Correlated quantizer

Correlated quantization: If one user rounds 
up, other users tend to round down
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Results on correlated stochastic quantizer

Theorem: For any  such that each , 
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A simple modification of the stochastic rounding algorithm 
Does not require prior knowledge of 
Data dependent bound
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Optimality of the correlated quantizer

Theorem: For any one bit quantizer and any , there exists  such that 

and
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Thank you! Poster tonight @ Hall E #1111

One-bit one-dimensional mean estimation
Existing algorithms: min-max bounds
New algorithm: instance-specific bounds
Optimality

Extensions to multiple bits
Extensions to high dimensions
Applications to distributed optimization


