

Paper ID: 2492

Detecting Corrupted Labels Without Training a Model to Predict

Zhaowei Zhu, Zihao Dong, Yang Liu

UC Santa Cruz

{zwzhu, yangliu}@ucsc.edu

Code

A Data-Centric Method

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

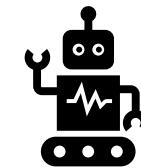
REsponsible & Accountable Learning (REAL)
@ University of California, Santa Cruz

Noisy Labels Are Everywhere

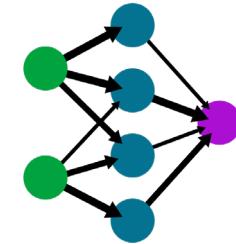
- Noisy labels may come from:

Human [1]

Sensor [2]



Model [3]



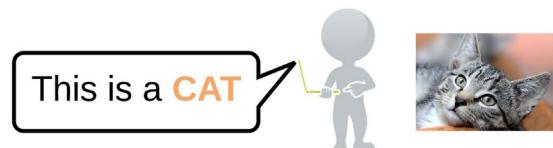
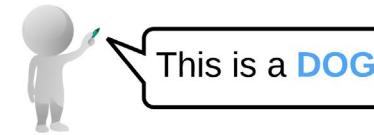
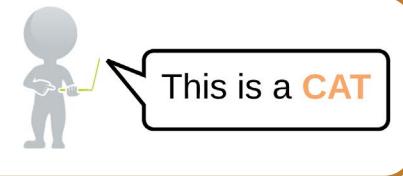
- Challenges [4]:

- Cause disparate impact
- Require disparate treatment

We need to remove wrong annotations if possible!

- [1] J. Wei, Z. Zhu, H. Cheng, T. Liu, G. Niu, Y. Liu. Learning with noisy labels revisited: A study using real-world human annotations. *ICLR* 2022.
- [2] J. Wang, H. Guo, Z. Zhu, Y. Liu. Policy Learning Using Weak Supervision. *NeurIPS* 2021.
- [3] Z. Zhu, T. Luo, Y. Liu. The Rich Get Richer: Disparate Impact of Semi-Supervised Learning. *ICLR* 2022.
- [4] Y. Liu. Understanding Instance-Level Label Noise: Disparate Impacts and Treatments. *ICML* 2021.

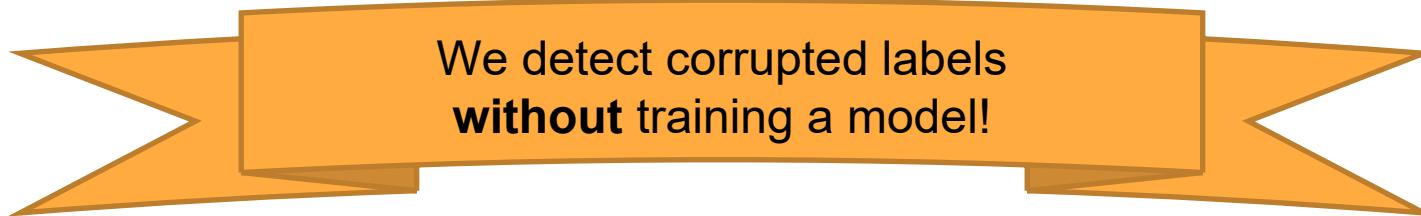
Detect Corrupted Labels



Noisy: correct/wrong

Corrupted: wrong annotations

Our Contributions

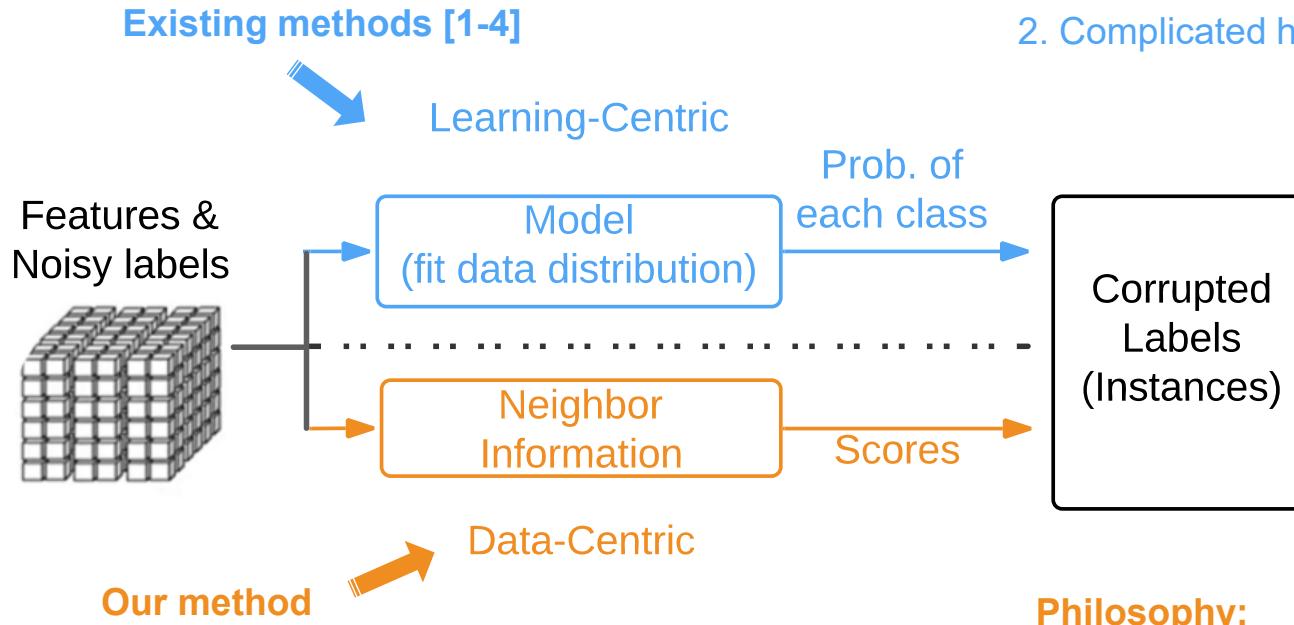


We detect corrupted labels
without training a model!

Highlights:

- ✓ New perspective: *data-centric*
- ✓ Efficient algorithms: Voting/Ranking
- ✓ Theoretical & Numerical Analyses

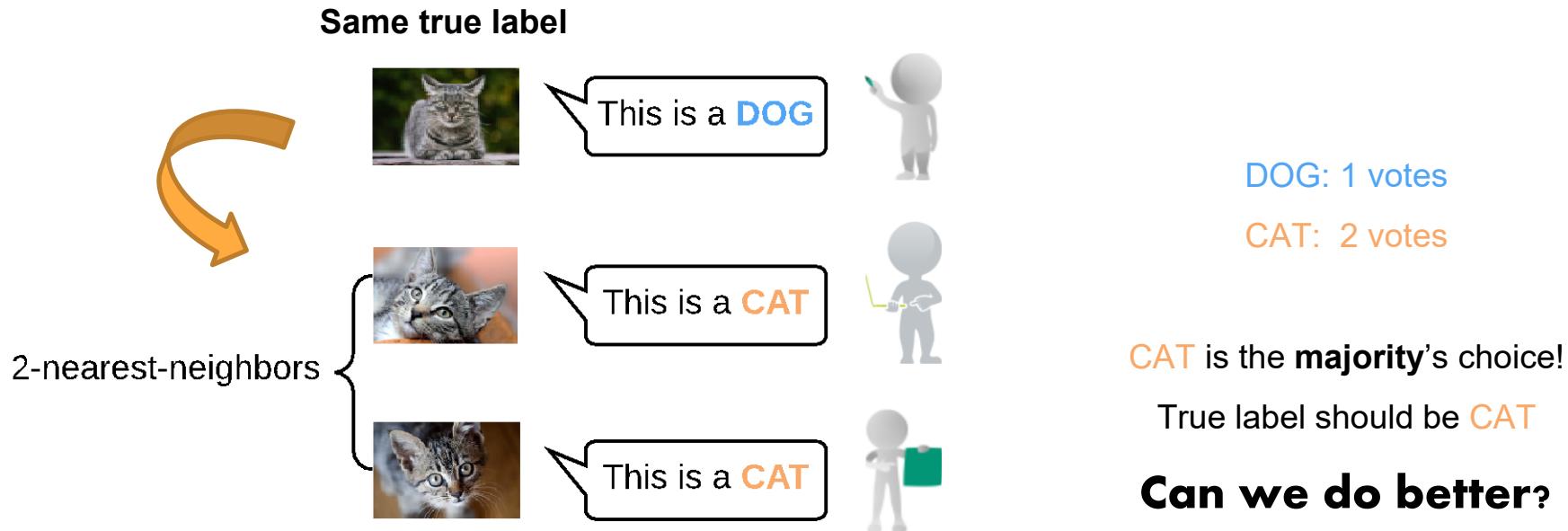
Existing Methods vs Our Methods



- [1] H. Cheng, Z. Zhu, X. Li, Y. Gong, X. Sun, Y. Liu. Learning with instance-dependent label noise: A sample sieve approach. *ICLR* 2021.
- [2] C. Northcutt, L. Jiang, I. Chuang. Confident learning: Estimating uncertainty in dataset labels. *JAIR* 2021.
- [3] D. Bahri, H. Jiang, M. Gupta. Deep k-nn for noisy labels. *ICML* 2020.
- [4] G. Pruthi, F. Liu, S. Kale, M. Sundararajan. Estimating training data influence by tracing gradient descent. *NeurIPS* 2020.

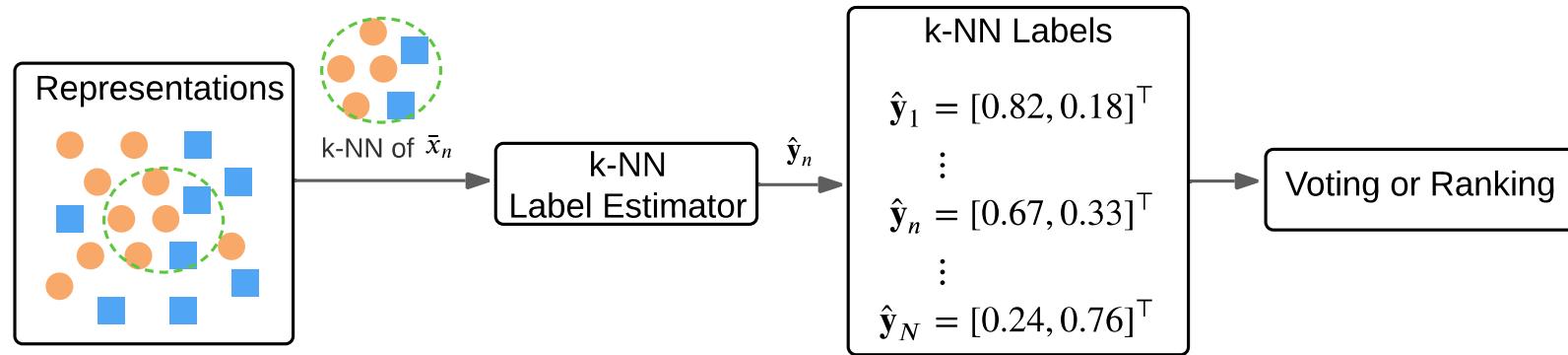
Motivation: Check with your neighbors

- Key Assumption: k-Nearest-Neighbor (k-NN) label clusterability [1]



[1] Z. Zhu, Y. Song, Y. Liu. Clusterability as an alternative to anchor points when learning with noisy labels. *ICML* 2021.

Our Method



Representations:

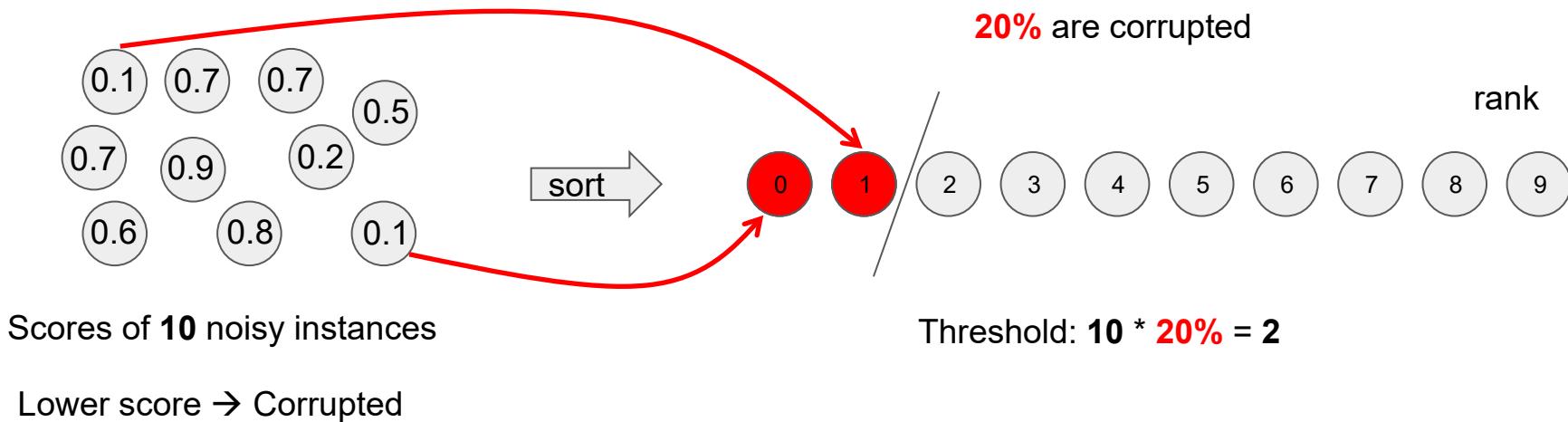
- Raw features
- Other pre-processed features.

Voting: Majority vote (illustrated before)

Ranking (better in most cases):

- Score function
- Threshold (guaranteed)

Ranking-Based Global Detection



Score function:

$\text{CosSim}(\text{kNN_label}, \text{noisy_label})$

Threshold: (given by HOC)

Prob. of being corrupted

Experiments

- CIFAR. (Clean test accuracy \uparrow)

METHOD	CIFAR10				CIFAR100			
	<i>Human</i>	<i>Symm. 0.6</i>	<i>Asym. 0.3</i>	<i>Inst. 0.4</i>	<i>Human</i>	<i>Symm. 0.6</i>	<i>Asym. 0.3</i>	<i>Inst. 0.4</i>
CORES	65.00	92.94	7.68	87.43	3.52	92.34	0.02	9.67
CL	55.85	80.59	76.45	62.89	64.58	78.98	52.96	50.08
TRACIN	55.02	76.94	73.47	58.85	61.75	76.74	48.42	49.89
DEEP k -NN	56.21	82.35	75.24	63.08	57.40	70.69	56.75	63.85
SiMiFEAT-V	82.30	93.21	82.52	81.09	73.19	84.48	65.42	74.26
SiMiFEAT-R	83.28	95.56	83.58	82.26	74.67	88.68	62.89	73.53

Ours

-V: Voting
-R: Ranking

CIFAR human annotations:

J. Wei, Z. Zhu, H. Cheng, T. Liu, G. Niu, Y. Liu.

Learning with noisy labels revisited: A study using real-world human annotations. /CLR 2022

Experiments

- Clothing1M (Clean test accuracy)

DATA SELECTION	# TRAINING	BEST EPOCH	LAST 10	LAST
(Baseline) NONE	1M (100%)	70.32	69.44 ± 0.13	69.53
R50-IMG	770K (77.0%)	72.37	71.95 ± 0.08	71.89
VIT-B/32-CLIP	700K (70.0%)	72.54	72.23 ± 0.17	72.11
R50-IMG WARMUP-1	767K (76.7%)	73.64	73.28 ± 0.18	73.41

Ours with different representations

Existing methods (Best Epoch):

HOC 73.39%, GCE+SimCLR 73.35%, CORES 73.24%, GCE 69.75%.

Thank you !

Want to know more?

1. Scan the QR code to reproduce
2. Join our **onsite** poster session

Code

