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Transformer Model: Computational Challenges

Challenges:
m Massive memory footprint (e.g. BERT, ViT, GPT-3)

m High inference latency

m Restricts their deployment on edge devices

Solution:

® Pruning: masking out redundant weights

m By ranking weights’ importance score S
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Pruning Transformer Model

Iterative Pruning;:

where

= o J 6; ifS;isin the top rM% of S,
(76, 9)]; = { 0 otherwise.

Remaining ratio r® follows a schedule. (Sanh et al., 2020; Han
et al., 2015; Zhu and Gupta, 2018)
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Importance Indicator

Sensitivity approximates the difference of the loss function when
masking a parameter with 0.

I;=16;_;VL(O)| = |L(0) L6 —6;))
where 6; _; =[0,...,0,6;,0,...,0] € R?
m A small sensitivity indicates that the weight is not very
important.

m Applied in many prior works (Sanh et al., 2020; Liang et al.,
2021)
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Existing Challenges

Uncertainty of Importance Estimation:

| IJ(»t) is computed based on a sampled mini batch of data.

7

m [; varies dramatically due to complicated training dynamics

m High variability of IJ(-t) = cannot reflect contribution of ;.
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Figure: Violin plot of sampled weight over ¢
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PLATON: Uncertainty Quantification
Sensitivity Smoothing:

=BT (1 - g1,

Uncertainty Quantification:

U(t) |I(t) _g't) | .

=08V + (1 U

m A large U§-t)

o —=(t) . : o
indicate Ig») is not yet a reliable indicator.
m Retain this weight for further exploration.

[ Ug-t) = upper confidence bound of weight importance.
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Figure: The CDF of sensitivity
and uncertainty when pruning
BERThase on RTE.

F(®) 77(t) :
m [, and U;" are highly skewed
to zero.
m Apply log() to distribute

them more evenly.
m Define the importance score as
) _ 7() 77(t)
S;7 =exp(log(I;") +log(U;"))

_7@®) ()
m Share the same sprint as UCB.
] T;t) = Exploitation on
historical importance.

] U§t> = Exploration for the
uncertain weights.
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GLUE Benchmark

Table: Results with BERTp,se on GLUE development set.

. MNLI RTE QNLI MRPC QQP SST-2 ColA STS-B
Ratio | Method m / mm Acc Acc Acc / F1 Acc / F1 Acc Mcc P/S Corr
100% | BERT s | 846 /834 693 913 86.4/903 915/85 927 58.3  90.2/89.7

(o Regularization | 80.5 /81.1 632 850 757 /802 885/833 850 NA. 828 /847
Magnitude 815/829 657 892 79.9/862 86.0/838 843 425  86.8/86.6
20% | Movement 80.6 /808 N.A 817 684/8l1 892/87 823 N.A. N.A.
Soft-Movement 81.6 /821 628 883 80.9/86.7 90.6/87.5 89.0 485 87.8 /875
PLATON 83.1 /834 686 90.1 855/89.8 90.7/87.5 913 545 89.0/885
lo Regularization | 79.1 /79.8 625 840 748/798 879/823 828 N.A.  818/842
Magnitude 80.1/80.7 646 830 69.6/79.4 836/79.2 828 NA. 854 /850
15% | Movement 80.1 /803 NA 812 684/81.0 896/8.1 818 N.A. N.A.
Soft-Movement 81.2/817 602 872 81.1/87.0 90.4/87.1 884 40.8  86.9 / 86.6
PLATON 82.7/83.0 657 89.9 853/89.5 90.5/87.3 911 525 88.4 /879
Ly Regularization | 78.0 / 78.7 59.9  82.8 73.8 /795 87.6/82.0 82.5 N.A. 827 / 83.9
Magnitude 788 /79.0 574 866 703/803 788/77.0 807 NA. 834 /833
10% Movement 793 /795 NA. 792 684 /812 89.1/85.4 80.2 N.A. N.A.
Soft-Movement 80.7 /811 588 866 79.7/859 90.2/86.7 874 NA. 865 /863
PLATON 82.0 /822 653 889 84.3/888 90.2/86.8 905 443 87.4/87.1
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Figure: Performance of pruning BERT s under different pruning ratio.
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Summary
m Pruning methods suffer from high variability of importance
scoring due to stochastic sampling and training dynamics.

m Sensitivity estimated on mini batches may not be an accurate
indicator of weight importance.

m PLATON combines both sensitivity smoothing and
uncertainty quantification to resolve such variability.

m Uncertainty quantification acts like upper confidence bound of
importance estimation and explores weights for a longer time.

m Extensive experimental results demonstrate the effectiveness
of PLATON.
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