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Transformer Model: Computational Challenges

Challenges:
Massive memory footprint (e.g. BERT, ViT, GPT-3)

High inference latency

Restricts their deployment on edge devices

Solution:
Pruning: masking out redundant weights

By ranking weights’ importance score S
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Pruning Transformer Model

Iterative Pruning:

θ̃
(t) = θ(t) − α∇L(θ(t)),

θ(t+1) = T (θ̃(t)
, S(t)),

where

[T (θ̃, S)]j =
{

θ̃j if Sj is in the top r(t)% of S,
0 otherwise.

Remaining ratio r(t) follows a schedule. (Sanh et al., 2020; Han
et al., 2015; Zhu and Gupta, 2018)
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Importance Indicator

Sensitivity approximates the difference of the loss function when
masking a parameter with 0.

Ij = |θ⊤
j,−j∇L(θ)| ≊ |L(θ) − L(θ − θj,−j)|

where θj,−j = [0, . . . , 0, θj , 0, . . . , 0] ∈ Rd

A small sensitivity indicates that the weight is not very
important.

Applied in many prior works (Sanh et al., 2020; Liang et al.,
2021)
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Existing Challenges
Uncertainty of Importance Estimation:

I
(t)
j is computed based on a sampled mini batch of data.

I
(t)
j varies dramatically due to complicated training dynamics

High variability of I
(t)
j ⇒ cannot reflect contribution of θj .
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Figure: Violin plot of sampled weight over t
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PLATON: Uncertainty Quantification
Sensitivity Smoothing:

I
(t)
j = β1I

(t−1)
j + (1 − β1)I(t)

j ,

Uncertainty Quantification:

U
(t)
j = |I(t)

j − I
(t)
j |.

U
(t)
j = β2U

(t−1)
j + (1 − β2)U (t)

j .

A large U
(t)
j indicate I

(t)
j is not yet a reliable indicator.

Retain this weight for further exploration.

U
(t)
j ⇒ upper confidence bound of weight importance.
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PLATON: Intuitions
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Figure: The CDF of sensitivity
and uncertainty when pruning
BERTbase on RTE.

I
(t)
j and U

(t)
j are highly skewed

to zero.
Apply log() to distribute
them more evenly.

Define the importance score as
S

(t)
j = exp(log(I(t)

j ) + log(U (t)
j ))

=I
(t)
j · U

(t)
j

Share the same sprint as UCB.
I

(t)
j ⇒ Exploitation on

historical importance.

U
(t)
j ⇒ Exploration for the

uncertain weights.
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GLUE Benchmark

Table: Results with BERTbase on GLUE development set.

Ratio Method MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B
m / mm Acc Acc Acc / F1 Acc / F1 Acc Mcc P/S Corr

100% BERTbase 84.6 / 83.4 69.3 91.3 86.4 / 90.3 91.5 / 88.5 92.7 58.3 90.2 / 89.7

20%

ℓ0 Regularization 80.5 / 81.1 63.2 85.0 75.7 / 80.2 88.5 / 83.3 85.0 N.A. 82.8 / 84.7
Magnitude 81.5 / 82.9 65.7 89.2 79.9 / 86.2 86.0 / 83.8 84.3 42.5 86.8 / 86.6
Movement 80.6 / 80.8 N.A. 81.7 68.4 / 81.1 89.2 / 85.7 82.3 N.A. N.A.
Soft-Movement 81.6 / 82.1 62.8 88.3 80.9 / 86.7 90.6 / 87.5 89.0 48.5 87.8 / 87.5
PLATON 83.1 / 83.4 68.6 90.1 85.5 / 89.8 90.7 / 87.5 91.3 54.5 89.0 / 88.5

15%

ℓ0 Regularization 79.1 / 79.8 62.5 84.0 74.8 / 79.8 87.9 / 82.3 82.8 N.A. 81.8 / 84.2
Magnitude 80.1 / 80.7 64.6 88.0 69.6 / 79.4 83.6 / 79.2 82.8 N.A. 85.4 / 85.0
Movement 80.1 / 80.3 N.A. 81.2 68.4 / 81.0 89.6 / 86.1 81.8 N.A. N.A.
Soft-Movement 81.2 / 81.7 60.2 87.2 81.1 / 87.0 90.4 / 87.1 88.4 40.8 86.9 / 86.6
PLATON 82.7 / 83.0 65.7 89.9 85.3 / 89.5 90.5 / 87.3 91.1 52.5 88.4 / 87.9

10%

ℓ0 Regularization 78.0 / 78.7 59.9 82.8 73.8 / 79.5 87.6 / 82.0 82.5 N.A. 82.7 / 83.9
Magnitude 78.8 / 79.0 57.4 86.6 70.3 / 80.3 78.8 / 77.0 80.7 N.A. 83.4 / 83.3
Movement 79.3 / 79.5 N.A. 79.2 68.4 / 81.2 89.1 / 85.4 80.2 N.A. N.A.
Soft-Movement 80.7 / 81.1 58.8 86.6 79.7 / 85.9 90.2 / 86.7 87.4 N.A. 86.5 / 86.3
PLATON 82.0 / 82.2 65.3 88.9 84.3 / 88.8 90.2 / 86.8 90.5 44.3 87.4 / 87.1
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Experimental Results

(a) QQP (b) MNLI-m
Figure: Performance of pruning BERTbase under different pruning ratio.
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Summary

Pruning methods suffer from high variability of importance
scoring due to stochastic sampling and training dynamics.

Sensitivity estimated on mini batches may not be an accurate
indicator of weight importance.

PLATON combines both sensitivity smoothing and
uncertainty quantification to resolve such variability.

Uncertainty quantification acts like upper confidence bound of
importance estimation and explores weights for a longer time.

Extensive experimental results demonstrate the effectiveness
of PLATON.
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