

PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance

Qingru Zhang¹, Simiao Zuo¹, Chen Liang¹, Alexander Bukharin¹, Pengcheng He², Weizhu Chen², Tuo Zhao¹

¹Georgia Institute of Technology & ²Microsoft Azure

qingru.zhang@gatech.edu

July 20, 2022

Background

Transformer Model: Computational Challenges

Challenges:

- Massive memory footprint (e.g. BERT, ViT, GPT-3)
- High inference latency
- Restricts their deployment on edge devices

Solution:

- Pruning: masking out redundant weights
- By ranking weights' importance score S

Pruning Transformer Model

Iterative Pruning:

$$\begin{aligned}\tilde{\boldsymbol{\theta}}^{(t)} &= \boldsymbol{\theta}^{(t)} - \alpha \nabla \mathcal{L}(\boldsymbol{\theta}^{(t)}), \\ \boldsymbol{\theta}^{(t+1)} &= \mathcal{T}(\tilde{\boldsymbol{\theta}}^{(t)}, S^{(t)}),\end{aligned}$$

where

$$[\mathcal{T}(\tilde{\boldsymbol{\theta}}, S)]_j = \begin{cases} \tilde{\boldsymbol{\theta}}_j & \text{if } S_j \text{ is in the top } r^{(t)}\% \text{ of } S, \\ 0 & \text{otherwise.} \end{cases}$$

Remaining ratio $r^{(t)}$ follows a schedule. (Sanh et al., 2020; Han et al., 2015; Zhu and Gupta, 2018)

Importance Indicator

Sensitivity approximates the difference of the loss function when masking a parameter with 0.

$$I_j = |\boldsymbol{\theta}_{j,-j}^\top \nabla \mathcal{L}(\boldsymbol{\theta})| \approx |\mathcal{L}(\boldsymbol{\theta}) - \mathcal{L}(\boldsymbol{\theta} - \boldsymbol{\theta}_{j,-j})|$$

where $\boldsymbol{\theta}_{j,-j} = [0, \dots, 0, \theta_j, 0, \dots, 0] \in \mathbb{R}^d$

- A small sensitivity indicates that the weight is not very important.
- Applied in many prior works (Sanh et al., 2020; Liang et al., 2021)

Existing Challenges

Uncertainty of Importance Estimation:

- $I_j^{(t)}$ is computed based on a sampled mini batch of data.
- $I_j^{(t)}$ varies dramatically due to complicated training dynamics
- High variability of $I_j^{(t)} \Rightarrow$ cannot reflect contribution of θ_j .

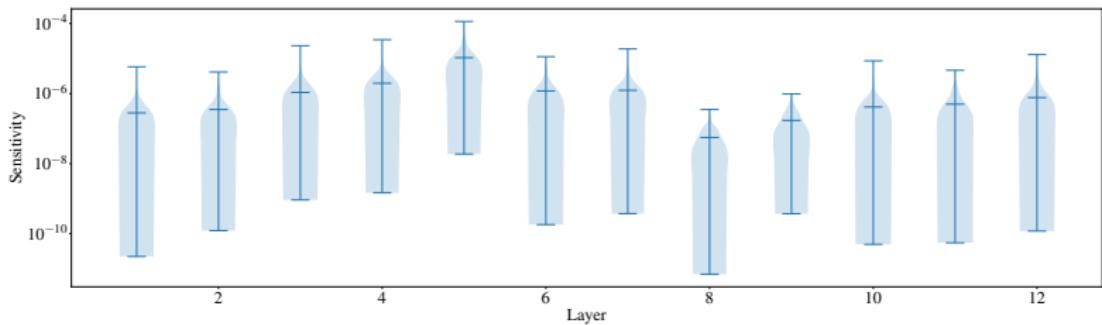


Figure: Violin plot of sampled weight over t

Our Method: PLATON

PLATON: Uncertainty Quantification

Sensitivity Smoothing:

$$\bar{I}_j^{(t)} = \beta_1 \bar{I}_j^{(t-1)} + (1 - \beta_1) I_j^{(t)},$$

Uncertainty Quantification:

$$U_j^{(t)} = |I_j^{(t)} - \bar{I}_j^{(t)}|.$$

$$\bar{U}_j^{(t)} = \beta_2 \bar{U}_j^{(t-1)} + (1 - \beta_2) U_j^{(t)}.$$

- A large $\bar{U}_j^{(t)}$ indicate $\bar{I}_j^{(t)}$ is not yet a reliable indicator.
- Retain this weight for further exploration.
- $\bar{U}_j^{(t)} \Rightarrow$ upper confidence bound of weight importance.

PLATON: Intuitions

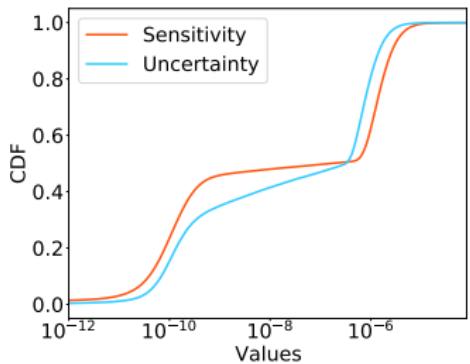


Figure: The CDF of sensitivity and uncertainty when pruning BERT_{base} on RTE.

- $\bar{I}_j^{(t)}$ and $\bar{U}_j^{(t)}$ are highly skewed to zero.
 - Apply $\log()$ to distribute them more evenly.
- Define the importance score as
$$S_j^{(t)} = \exp(\log(\bar{I}_j^{(t)}) + \log(\bar{U}_j^{(t)})) = \bar{I}_j^{(t)} \cdot \bar{U}_j^{(t)}$$
- Share the same sprint as UCB.
 - $\bar{I}_j^{(t)} \Rightarrow$ Exploitation on historical importance.
 - $\bar{U}_j^{(t)} \Rightarrow$ Exploration for the uncertain weights.

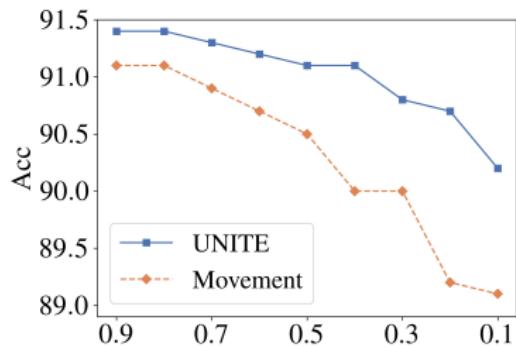
Experimental Results

GLUE Benchmark

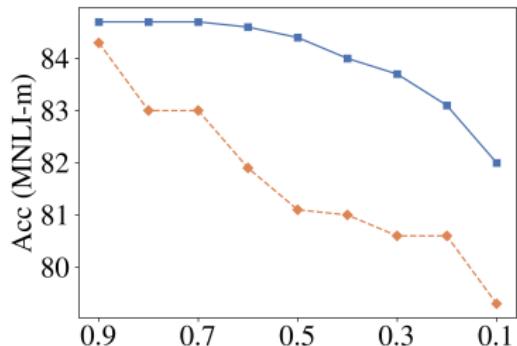
Table: Results with BERT_{base} on GLUE development set.

Ratio	Method	MNLI m / mm	RTE Acc	QNLI Acc	MRPC Acc / F1	QQP Acc / F1	SST-2 Acc	CoLA Mcc	STS-B P/S Corr
100%	BERT _{base}	84.6 / 83.4	69.3	91.3	86.4 / 90.3	91.5 / 88.5	92.7	58.3	90.2 / 89.7
20%	ℓ_0 Regularization	80.5 / 81.1	63.2	85.0	75.7 / 80.2	88.5 / 83.3	85.0	N.A.	82.8 / 84.7
	Magnitude	81.5 / 82.9	65.7	89.2	79.9 / 86.2	86.0 / 83.8	84.3	42.5	86.8 / 86.6
	Movement	80.6 / 80.8	N.A.	81.7	68.4 / 81.1	89.2 / 85.7	82.3	N.A.	N.A.
	Soft-Movement	81.6 / 82.1	62.8	88.3	80.9 / 86.7	90.6 / 87.5	89.0	48.5	87.8 / 87.5
	PLATON	83.1 / 83.4	68.6	90.1	85.5 / 89.8	90.7 / 87.5	91.3	54.5	89.0 / 88.5
15%	ℓ_0 Regularization	79.1 / 79.8	62.5	84.0	74.8 / 79.8	87.9 / 82.3	82.8	N.A.	81.8 / 84.2
	Magnitude	80.1 / 80.7	64.6	88.0	69.6 / 79.4	83.6 / 79.2	82.8	N.A.	85.4 / 85.0
	Movement	80.1 / 80.3	N.A.	81.2	68.4 / 81.0	89.6 / 86.1	81.8	N.A.	N.A.
	Soft-Movement	81.2 / 81.7	60.2	87.2	81.1 / 87.0	90.4 / 87.1	88.4	40.8	86.9 / 86.6
	PLATON	82.7 / 83.0	65.7	89.9	85.3 / 89.5	90.5 / 87.3	91.1	52.5	88.4 / 87.9
10%	ℓ_0 Regularization	78.0 / 78.7	59.9	82.8	73.8 / 79.5	87.6 / 82.0	82.5	N.A.	82.7 / 83.9
	Magnitude	78.8 / 79.0	57.4	86.6	70.3 / 80.3	78.8 / 77.0	80.7	N.A.	83.4 / 83.3
	Movement	79.3 / 79.5	N.A.	79.2	68.4 / 81.2	89.1 / 85.4	80.2	N.A.	N.A.
	Soft-Movement	80.7 / 81.1	58.8	86.6	79.7 / 85.9	90.2 / 86.7	87.4	N.A.	86.5 / 86.3
	PLATON	82.0 / 82.2	65.3	88.9	84.3 / 88.8	90.2 / 86.8	90.5	44.3	87.4 / 87.1

Experimental Results



(a) QQP



(b) MNLI-m

Figure: Performance of pruning BERT_{base} under different pruning ratio.

Summary

Summary

- Pruning methods suffer from high variability of importance scoring due to stochastic sampling and training dynamics.
- Sensitivity estimated on mini batches may not be an accurate indicator of weight importance.
- PLATON combines both sensitivity smoothing and uncertainty quantification to resolve such variability.
- Uncertainty quantification acts like upper confidence bound of importance estimation and explores weights for a longer time.
- Extensive experimental results demonstrate the effectiveness of PLATON.

References

HAN, S., POOL, J., TRAN, J. and DALLY, W. J. (2015). Learning both weights and connections for efficient neural network. In *Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada* (C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama and R. Garnett, eds.).

LIANG, C., ZUO, S., CHEN, M., JIANG, H., LIU, X., HE, P., ZHAO, T. and CHEN, W. (2021). Super tickets in pre-trained language models: From model compression to improving generalization. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics.

SANH, V., WOLF, T. and RUSH, A. M. (2020). Movement pruning: Adaptive sparsity by fine-tuning.

ZHU, M. and GUPTA, S. (2018). To prune, or not to prune: Exploring the efficacy of pruning for model compression.

Thank You!