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Motivation

Self-attention models capture long-range context by pairwise attention
. Assume fixed attention granularity defined by individual tokens
. Limited for modeling complex contextual dependencies

. Costly: may need many layers to make up for the fixed granularity
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Literature

Hierarchical context in Transformers - fixed scaling scheme
- Swin transformer [ICCV 2021], PVT [ICCV 2021] ...

Area attention [ICML 2019]

- Multi-scale memory captures rich context with fixed pooling sizes

Efficient Transformers with sparse attention/context
. Local window [ACL 2019], blockwise [EMNLP 2020] ...
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- Pool neighboring features in a memory
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- Adaptive attention granularity: item-
wise—context-wise attention
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ContextPool

Learning adaptive pooling function
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ContextPool for Transformer
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ContextPool for ConvNet
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Results
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Conclusions

- Introduce ContextPool to model dynamic context and adapt attention
granularity

- Improves transformer models Iin performance-cost trade-off

- Also applicable to ConvNets for efficient but strong representation learning
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