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Motivation

Self-attention models capture long-range context by pairwise attention
¥ Assume fixed attention granularity defined by individual tokens
¥ Limited for modeling complex contextual dependencies

¥ Costly: may need many layers to make up for the fixed granularity
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Literature

Hierarchical context in Transformers - fixed scaling scheme
¥ Swin transformer [ICCV 2021], PVT [ICCV 2021] E

Area attention [ICML 2019}

¥ Multi-scale memory captures rich context with fixed pooling sizes

Efficient Transformers with sparse attention/context
¥ Local window [ACL 2019], blockwise [EMNLP 2020] E
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ContextPool for Transformer
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ContextPool for ConvNet
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Results

Transformers
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Conclusions

¥ Introduce ContextPool to model dynamic context and adapt attention
granularity

¥ Improves transformer models in performance-cost trade-off

¥ Also applicable to ConvNets for efficient but strong representation learning



TM and © 2022 Apple Inc. All rights reserved.



