

Learning fair representation with a parametric integral probability metric

D.Kim ¹² and K.Kim ³ and I.Kong ³ and I.Ohn ⁴ and Y.Kim ³

Speaker : Dongha Kim

¹Department of Statistics, Sungshin Women's University

²Data Science Center, Sungshin Women's University

³Department of Statistics, Seoul National University

⁴Department of Statistics, Inha University

Learning fair representation (LFR)

- Learning a function $h(X, S) : \mathcal{X} \times \{0, 1\} \rightarrow \mathcal{Z} \subset \mathbb{R}^m$ that maps data including the sensitive information to feature vectors so that the distributions for each sensitive group are similar.
- Adversarial training scheme is a popular approach for LFR.
- But, most methods suffered from
 - lacking their theoretical properties.
 - instability, so they are not appealing to practitioners.
- Need to develop a new method that
 - has concrete theoretical guarantees.
 - gives stable results for various initializations.

Sigmoid IPM (sIPM)

- We consider a IPM measure with the sigmoid function to learn fair representations:

$$d\mathcal{V}_{sig}(\mathbb{P}, \mathbb{Q}) = \sup_{v \in \mathcal{V}} \left| \int v(\mathbf{z})(d\mathbb{P}(\mathbf{z}) - d\mathbb{Q}(\mathbf{z})) \right|,$$

where \mathbb{P}, \mathbb{Q} are two probability measures and

$$\mathcal{V}_{sig} = \{\sigma(\theta^\top \mathbf{x} + \mu) : \theta \in \mathbb{R}^m, \mu \in \mathbb{R}\}.$$

- $\sigma(\cdot)$: sigmoid function.

sIPM for LFR (sIPM-LFR)

- We use the sIPM as the regularization term.

1. Supervised learning

$$L(f \circ h) + \lambda d(\mathbb{P}_0^h, \mathbb{P}_1^h)$$

- \mathbb{P}_s^h : distribution of $h(X, S) | S = s$
- $f : \mathcal{Z} \rightarrow \mathbb{R}$: prediction function
- L : classification loss function

2. Unsupervised learning

$$L_{recon}(f_D \circ h) + \lambda d(\mathbb{P}_0^h, \mathbb{P}_1^h)$$

- $f_D : \mathcal{Z} \rightarrow \mathcal{X} \times \{0, 1\}$: decoder
- L_{recon} : reconstruction loss function

Theoretical properties

- We characterize the relationship between the level of the sIPM and the fairness of the final prediction model: $f \circ h$:

$$\sup_{f \in \mathcal{F}} DP_\phi(f \circ h) \leq \rho \left\{ d_V(\mathbb{P}_0^h, \mathbb{P}_1^h) \right\},$$

where DP_ϕ is the demographic parity and ρ is a non-decreasing function.

- Thus, we can achieve a fair prediction model by forcing representations to be fair with the sIPM.

Performance evaluation (Adult data set)

- Our method provides
 - better trade-offs between accuracy and fairness.
 - much more stable results.



