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Gradient Compression in Distributed Learning
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Background: Large Batch Optimization

Use largest batch size that still fits the GPU memory

* Local batch size is fixed for each GPU (total batch size increases as the
number of GPUs increases)

* Fully utilize the compute power of each node

* Same generalization with some mitigation tricks (e.g., layerwise adaptive
learning rates as in Lars) [1,2]

[1] Goyal, Priya, et al. "Accurate, large minibatch sgd: Training imagenet in 1 hour." arXiv (2017)
[2] You, Yang, et al. "Large batch optimization for deep learning: Training bert in 76 minutes." arXiv (2019)



Gradient Compression for Large Batch

Optimization

Existing Gradient Compression methods

* Onginally designed for the case when communication cost is dominant
* Only reduce the communication cost

* Computation of these dropped gradient coordinates Is wasted

Key Observation
* Communication cost is no longer dominant for large batch optimization especially after
applying existing gradient compression methods

Our idea

* Reduce both the computation and communication costs
* Use a bandit method to gradually learn the importance score of each gradient

coordinate/block during training
* Skip computing the dropped gradient coordinates/blocks



Our methods: JointSpar and JointSpar-Lars
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Convergence Rate Analysis

Our methods have the same iteration convergence rates of their respective
baselines (assuming nonconvex objective)
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Experiments: Faster Wallclock Time
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(a) LeNet on MNIST

100

racy

g

sti

ence

JointSpar-Lars
FullPrecision
QSGD

e ATOMO

—e— TernGrad

—_—
—_—

Testing Accuracy
w
o

500 4000 1500 000 7500 2000
Time (in seconds)

(b) ResNet-18 on CIFARI0
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(c) ResNet-18 on CIFARI00




Conclusion

* Propose gradient compression methods for large batch optimization

* Theoretically prove our methods have the same iteration convergence rates as
their corresponding baseline methods

* Empirically demonstrate our methods have faster wall-clock time convergence

rates

For complete detalls on this work, please refer to our paper

Rur Liu, Barzan Mozafari. Communication-efficient Distributed Learning for Large Batch
Optimization, ICML 2022



