Communication-efficient
Distributed Learning for Large
Batch Optimization

Rui Liu, Barzan Mozafari
University of Michigan, Ann Arbor

ICML 2022

Gradient Compression in Distributed Learning

Parameter 91

Server /g w
Worker

Machines g Q

Gradlent Compression

Background: Large Batch Optimization

Use largest batch size that still fits the GPU memory

* Local batch size is fixed for each GPU (total batch size increases as the
number of GPUs increases)

* Fully utilize the compute power of each node

* Same generalization with some mitigation tricks (e.g., layerwise adaptive
learning rates as in Lars) [1,2]

[1] Goyal, Priya, et al. "Accurate, large minibatch sgd: Training imagenet in 1 hour." arXiv (2017)
[2] You, Yang, et al. "Large batch optimization for deep learning: Training bert in 76 minutes." arXiv (2019)

Gradient Compression for Large Batch

Optimization

Existing Gradient Compression methods

* Onginally designed for the case when communication cost is dominant
* Only reduce the communication cost

* Computation of these dropped gradient coordinates Is wasted

Key Observation
* Communication cost is no longer dominant for large batch optimization especially after
applying existing gradient compression methods

Our idea

* Reduce both the computation and communication costs
* Use a bandit method to gradually learn the importance score of each gradient

coordinate/block during training
* Skip computing the dropped gradient coordinates/blocks

Our methods: JointSpar and JointSpar-Lars

Initialize model parameters and
distribution p

V2

Select an active set A of
parameters by sampling from p

A4

Compute gradients and update
model only for parameters in A

V2

Update distribution p with a
bandit method
JointSpar (JointSpar-Lars: use
layerwise adaptive learning rates)

[Initialize model parameters] From SGD/Lars to
JointSpar/jointSpa

{} r-Lars

[Compute gradients J(::\I >

{ Update model parameters

(

))))
LLJ \. _/ ?} —

SGD (Lars: use layerwise
adaptive learning rates when
updating model parameters)

Convergence Rate Analysis

Our methods have the same iteration convergence rates of their respective
baselines (assuming nonconvex objective)

(
' jomtSpar 0 (\/7_‘) : same as SGD’s convergence rate

I I S S S S S S S e e e

(1
| ’

IjOintSPar-LarS.' 0 (;) : same as LarSS Convergence rate
)

100

Testing Accuracy
p=Y (=] co
(=) o o

N
o

Experiments: Faster Wallclock Time

JointSpar-Lars

——FullPrecision

QSGD
ATOMO

—e— TernGrad

20 a0 &0 20
Time (in seconds)

(a) LeNet on MNIST

100

racy

g

sti

ence

JointSpar-Lars
FullPrecision
QSGD

e ATOMO

—e— TernGrad

—_—
—_—

Testing Accuracy
w
o

500 4000 1500 000 7500 2000
Time (in seconds)

(b) ResNet-18 on CIFARI0

[=)]
[=]

Ul
o

=9
o

N
o

[y
(=]

(=)

JointSpar-Lars
FullPrecision
QSGD

s ATOMO

—e— TernGrad

3000 9000 5000 3000 00
Time (in seconds)

(c) ResNet-18 on CIFARI00

Conclusion

* Propose gradient compression methods for large batch optimization

* Theoretically prove our methods have the same iteration convergence rates as
their corresponding baseline methods

* Empirically demonstrate our methods have faster wall-clock time convergence

rates

For complete detalls on this work, please refer to our paper

Rur Liu, Barzan Mozafari. Communication-efficient Distributed Learning for Large Batch
Optimization, ICML 2022

