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Control with Rich Observations

Challenges:
@ irrelevant or redundant features
@ complicated dynamics

o difficult to efficiently learn policies
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@ Learn state representations with linear dynamics [WSBR15]

o Fit representations to forward or inverse dynamics models
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Objectives of This Work

© Analyze approaches based on forward and inverse models
@ Devise new algorithms with provable guarantees

© Validate algorithms with simple experiments
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Hidden Subspace Model

Observation x; has a linear and nonlinear part:

Xt = Yt + Z¢

Linear dynamics on a latent subspace V

yieV
Ye+1 = Ay: + Bug

Nonlinear, irrelevant dynamics on v+

zi € v+
cort(ze1, (xe, up)) < 1

zei1 L (X, ue) | Vet
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Forward Model

Predict next state given current state and action
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Forward Model

Predict next state given current state and action
Goal: Px; = APxy + Bug

First Attempt:

Pn,1Ai’nB E||Px; — (APxo + Buo)H%

Issues: trivial solutions, bad local minima
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Forward Model

Regularized Objective:

o1 A
min. S|P — Qo — Duol3+ JIPEPT — I} (1)
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Forward Model

Regularized Objective:

o1 A
min. S|P — Qo — Duol3+ JIPEPT — I} (1)

Let (P*,Q*, D*) be a local minimum of (1). Then the rows of P* span
the subspace V.
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Inverse Model

Predict action given current and previous state
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Inverse Model

Predict action given current and previous state

Observe: ug = BTPx; — BT APxg

in E|u — (CPx1 — CAPxo)|/3
i, luo — (CPx1 o) |2

Issues: bad local minima, can't recover entire subspace V
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Inverse Model

Multi-step convex relaxation:

i—1

min ,EZHU, 1 — (Pxi — Lixo = Y Twewic1—i)|I3 (2)

k=1
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Inverse Model

Multi-step convex relaxation:

i—1

min ,EZHU, 1 — (Pxi — Lixo = Y Twewic1—i)|I3 (2)

k=1

Let P*,L},---, T{,--- be a minimal-norm optimal solution of (2). Then
the rows of P*,L3,..., L} span the subspace V.
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Experiment: Inverted Pendulum

Task: swing the pendulum into vertical position, stabilize
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Policy Learning

Forward Model

Inverse Model
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