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Control with Rich Observations

Challenges:

irrelevant or redundant features

complicated dynamics

difficult to efficiently learn policies
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Previous Work

Learn state representations with linear dynamics [WSBR15]

Fit representations to forward or inverse dynamics models
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Objectives of This Work

1 Analyze approaches based on forward and inverse models

2 Devise new algorithms with provable guarantees

3 Validate algorithms with simple experiments
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Hidden Subspace Model

Observation xt has a linear and nonlinear part:

xt = yt + zt

Linear dynamics on a latent subspace V

yi ∈ V

yt+1 = Ayt + But

Nonlinear, irrelevant dynamics on V⊥:

zi ∈ V⊥

corr(zt+1, (xt , ut)) < 1

zt+1 ⊥ (xt , ut) | yt+1
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Forward Model

Predict next state given current state and action

Goal: Px1 = APx0 + Bu0

First Attempt:
min
P,A,B

E∥Px1 − (APx0 + Bu0)∥22

Issues: trivial solutions, bad local minima
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Forward Model

Regularized Objective:

min
P,Q,D

1

2
E∥Px1 − Qx0 − Du0∥22 +

λ

4
∥PΣx1P

⊤ − I∥2F (1)

Theorem

Let (P∗,Q∗,D∗) be a local minimum of (1). Then the rows of P∗ span
the subspace V .
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Inverse Model

Predict action given current and previous state

Observe: u0 = B+Px1 − B+APx0

min
P,A,C

E∥u0 − (CPx1 − CAPx0)∥22

Issues: bad local minima, can’t recover entire subspace V
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Inverse Model

Multi-step convex relaxation:

min
θ

1

2
E

r∑
i=1

∥ui−1 − (Pxi − Lix0 −
i−1∑
k=1

Tkui−1−k)∥22 (2)

Theorem

Let P∗, L∗1, · · · ,T ∗
1 , · · · be a minimal-norm optimal solution of (2). Then

the rows of P∗, L∗1, . . . , L
∗
r span the subspace V .
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Experiment: Inverted Pendulum

Task: swing the pendulum into vertical position, stabilize
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Policy Learning
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