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Transfer operator for distributions

For a non-singular deterministic mapping f on a measure space (X,B,u) ,
the transfer operator (or Perron-Frobenius operator) P : L'(X) — Ll(X) s a
linear operator defined as
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Learning the transfer operator has been studied for a long time in the context of
dynamical systems [Preis et al., 2004][Klus et al., 2016]

Klus, S., Koltai, P., & Schitte, C. (2016). On the numerical approximation of the Perron-Frobenius and Koopman operator

Preis, R., Dellnitz, M., Hessel, M., Schiitte, C., & Meerbach, E. (2004). Dominant paths between almost invariant sets of dynamical systems.



Main challenges

To fully capture the dynamics,
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Main challenges

We do not have direct access to SAMPLES
the input density, but only its
samples.
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Main challenges

The transfer operator is a
function of density functions.
It is not immediately clear
how to instantiate it on the
input space and apply to

samples. ‘?)




Kernel Perron-Frobenius Operator

(KPF)

Use RKHS and kernel embeddings to address ALL challenges at once

Let ¢, 1/1 be the feature mappings of the RKHS H, G , respectively

The kernel mean embeddings of the distributions are defined as

nz =€nlpz) =
ny =€qlpx) =

Kernel Mean Embedding Operator
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For characteristic kernels, the kernel mean embeddings are injective.



Kernel Perron-Frobenius Operator
(KPF)

A remarkable result by [Song et al., 2009] shows that

—1
Uy = Z/{.)C'|Z/’LZ — CXZCXX Z[Klusetal. 2017]

% p. (KPF)

where CXZ and CXX are the (uncentered) covariance/cross-
covariance operators
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Sampling using KPF

* We can sample 2% ~ X* from X* = ¢ (Peop(2))
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(However, it is often not the case...)

» When the pre-image map 770_1(-) can be computed exactly, we have

paoe = B [0(AX7)] = Ez[Pe¢(2)] = Pepz = pa




Empirical form of KPF

KPF can be estimated empirically through sample estimates of
(cross-)covariance operators

Let D and \I be the RKHS feature maps of samples of Z and X’

Pe = CozCil = (LU0 T) (<o)L —w(@ D) 1o

n n

Notice that the empirical KPF has the exact form of kernel ridge regression!



Distribution learning on toy data

Samples Density estimation
Ground *
Truth
Gaussian
Mixture
Glow

(Schuster et al., 2020)

Schuster, I., Mollenhauer, M., Klus, S. & Muandet, K.. (2020). Kernel Conditional Density Operators.



Distribution learning on toy data
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(Schuster et al., 2020)

Schuster, I., Mollenhauer, M., Klus, S. & Muandet, K.. (2020). Kernel Conditional Density Operators.



Image generation

* Image data often lives on a low-dimensional manifold in a large
ambient space.

* Directly computing the pre-images in the ambient space likely would
not produce reasonable, in-distribution samples.
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Image generation

 Similar to [Li et al., 2015], we use a pretrained autoencoder and
estimates the density on the latent space

Step 1: Train a (regularized) AE Step 2: Estimate KPF on latent space  Step 3: Generate new samples
Preimage

Li, Y., Swersky, K., & Zemel, R. (2015, June). Generative moment matching networks.




Image generation

ﬁ‘al\ e,

, ,!AN.?, &Qg\

N—-QnQAaNQ
XV ~w~FO
QrownoI S
~ouVVg~N™M
THh—N%xd0
@ Q o-cf bo—
A= NOS N—m

Cmam—

_krr SRAENTK _KPF

SRAERpF

SRAEGy M

Vanilla WAE'T 2-stage SRAEgiow
VAE

CAGlow*

Glow*

(ours)

(ours)

VAE

19.5
77.5

19.7

16.7

15.5

20.4 18.3

26.3 36.5

25.8

MNIST

77.9

79.2

85.9

110.3
44.7

117.4

53.7

111.0

52.1

CIFAR-10
CelebA

41.0

41.9

42.0

35.0

104.9

103.7




Image generation

* kPF samples using NVAE [Vahdat & Kautz, 2020] latent space

Vahdat A., Kautz J. (2020). NVAE: A Deep Hierarchical Variational Autoencoder



KPF in limited data regime
We took 100 samples (<1%) from CelebA and learned the latent distribution
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KPF in limited data regime

We learned KPF from the high-resolution brain MR images of 474 patients

Statistically significant regions (p < 0.05)
control group vs. diseased group




Key Takeaways

* kPF is a closed-form, linear operator in RKHS that approximates the transfer
operator of the forward operators in generative models

e Despite certain limitations (e.g. scalability, requirement of a smooth latent space),
kPF compares well with existing decoder-based generative models

* In the low-data regime, kPF outperforms deep generative models in terms of
both computational cost and sample quality



Thank you!



