
Forward Operator Estimation
in Generative Models

with Kernel Transfer Operators

Zhichun Huang
Carnegie Mellon University

Rudrasis Chakraborty
Butlr

Vikas Singh
University of Wisconsin-Madison



Forward Operator in generative models



Forward Operator in generative models

𝑓



Forward Operator in generative models

GAN GeneratorZ DiscriminatorX’ 𝐿𝑎𝑑𝑣

EncoderX DecoderZVAE

Flow

𝐿𝑟𝑒𝑐X’

Z

𝑓𝜃
−1

𝑓𝜃
X

𝐿𝑑𝑖𝑣

𝑝𝜃(𝑥)



Forward Operator in generative models

GAN GeneratorZ DiscriminatorX’ 𝐿𝑎𝑑𝑣

EncoderX DecoderZVAE

Flow

𝐿𝑟𝑒𝑐X’

Z

𝑓𝜃
−1

𝑓𝜃
X

𝐿𝑑𝑖𝑣

𝑝𝜃(𝑥)

Forward 
Operator



Forward Operator in generative models

𝑓



Forward Operator in generative models

𝑓

𝒫



Transfer operator for distributions

For a non-singular deterministic mapping     on a measure space                     , 
the transfer operator (or Perron-Frobenius operator)                                        is a 
linear operator defined as 

Learning the transfer operator has been studied for a long time in the context of 
dynamical systems [Preis et al., 2004][Klus et al., 2016]

Klus, S., Koltai, P., & Schütte, C. (2016). On the numerical approximation of the Perron-Frobenius and Koopman operator

Preis, R., Dellnitz, M., Hessel, M., Schütte, C., & Meerbach, E. (2004). Dominant paths between almost invariant sets of dynamical systems.



Main challenges

To fully capture the dynamics, 
the transfer operator only 
exists on a sufficiently large 
space (i.e. a space supported 
by a large/infinite set of basis 
functions)
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Main challenges

We do not have direct access to 
the input density, but only its 
samples.



Main challenges

The transfer operator is a 
function of density functions. 
It is not immediately clear 
how to instantiate it on the 
input space and apply to 
samples.
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Kernel Perron-Frobenius Operator 
(KPF)
Use RKHS and kernel embeddings to address ALL challenges at once

Let                 be the feature mappings of the RKHS             , respectively

The kernel mean embeddings of the distributions are defined as

For characteristic kernels,  the kernel mean embeddings are injective.

Kernel Mean Embedding Operator



Kernel Perron-Frobenius Operator 
(KPF)
A remarkable result by [Song et al., 2009] shows that

where             and              are the (uncentered) covariance/cross-
covariance operators         

𝒫ℰ (KPF)
[Klus et al., 2017]
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Sampling using KPF

• We can sample                   from

... ...

• When the pre-image map                can be computed exactly, we have 
(However, it is often not the case…)
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Empirical form of KPF

KPF can be estimated empirically through sample estimates of 
(cross-)covariance operators

Let        and       be the RKHS feature maps of samples of        and 

Notice that the empirical KPF has the exact form of kernel ridge regression!



Distribution learning on toy data
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(Schuster et al., 2020)

Schuster, I., Mollenhauer, M., Klus, S. & Muandet, K.. (2020). Kernel Conditional Density Operators.



Distribution learning on toy data

Ground 
Truth

Gaussian 
Mixture

Glow

Ours

Samples Density estimation

(Schuster et al., 2020)

Schuster, I., Mollenhauer, M., Klus, S. & Muandet, K.. (2020). Kernel Conditional Density Operators.



Image generation

• Image data often lives on a low-dimensional manifold in a large 
ambient space.

• Directly computing the pre-images in the ambient space likely would 
not produce reasonable, in-distribution samples.
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Image generation

• Similar to [Li et al., 2015], we use a pretrained autoencoder and 
estimates the density on the latent space

𝑥 𝑥ℎ

Step 1: Train a (regularized) AE Step 2: Estimate KPF on latent space

ℎ

𝑧

P

Ψ

Φ

RKHS

Step 3: Generate new samples

P෩Φ ෩Ψ ෨ℎ ෤𝑥

Preimage

Li, Y., Swersky, K., & Zemel, R. (2015, June). Generative moment matching networks. 
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Image generation

• kPF samples using NVAE [Vahdat & Kautz, 2020] latent space

Vahdat A., Kautz J. (2020). NVAE: A Deep Hierarchical Variational Autoencoder 



KPF in limited data regime

We took 100 samples (<1%) from CelebA and learned the latent distribution 

GlowVAE RBF-KPF
(ours)

NTK-KPF
(ours)

FID
(Lower is better)



KPF in limited data regime

VAE

Ours

Data

We learned KPF from the high-resolution brain MR images of 474 patients
Statistically significant regions (p < 0.05)

control group vs. diseased group

Data

Ours



Key Takeaways

• kPF is a closed-form, linear operator in RKHS that approximates the transfer 
operator of the forward operators in generative models

• Despite certain limitations (e.g. scalability, requirement of a smooth latent space), 
kPF compares well with existing decoder-based generative models

• In the low-data regime, kPF outperforms deep generative models in terms of 
both computational cost and sample quality



Thank you!


