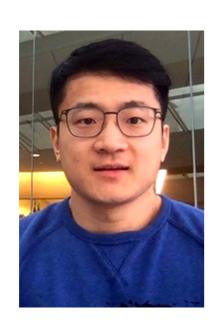
Contextual Bandits with Large Action Spaces: Made Practical



Yinglun Zhu¹, Dylan Foster², John Langford², Paul Mineiro²

¹University of Wisconsin-Madison ²Microsoft Research NYC

For each round t = 1,..., T:

For each round t = 1,..., T:

• Receive context x_t .

For each round t = 1,..., T:

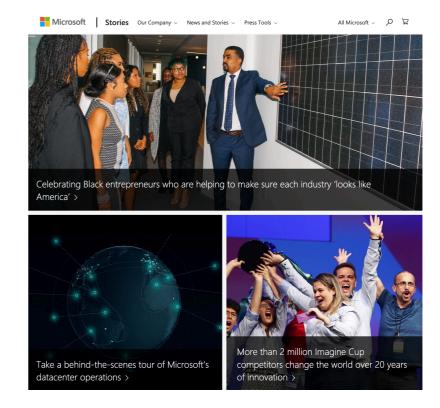
- Receive context x_t .
- Select action $a_t \in \mathcal{A} := [1,...,A]$.

For each round t = 1,..., T:

- Receive context x_t .
- Select action $a_t \in \mathcal{A} := [1,...,A]$.
- Observe reward $r_t(a_t) \in [-1,1]$.

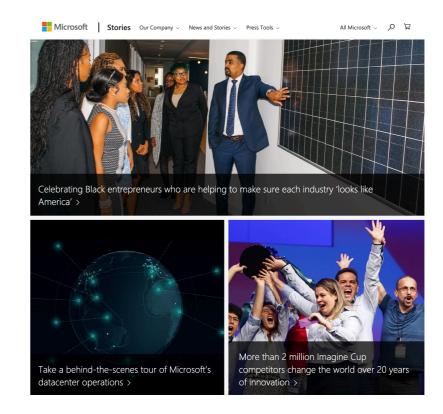
For each round t = 1,...,T:

- Receive context x_t .
- Select action $a_t \in \mathcal{A} := [1,...,A]$.
- Observe reward $r_t(a_t) \in [-1,1]$.



For each round t = 1,...,T:

- Receive context x_t .
- Select action $a_t \in \mathcal{A} := [1,...,A]$.
- Observe reward $r_t(a_t) \in [-1,1]$.



Goal: Minimize regret $\operatorname{Reg}_{\operatorname{CB}}(T) := \sum_{t=1}^{T} r_t(\pi^*(x_t)) - r_t(a_t)$.

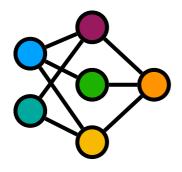
A standard realizability assumption

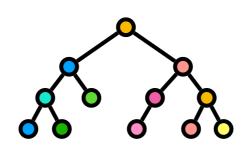
We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

A standard realizability assumption

We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc.



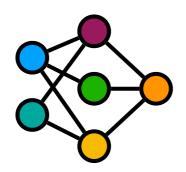


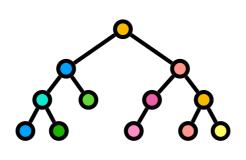


A standard realizability assumption

We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc.

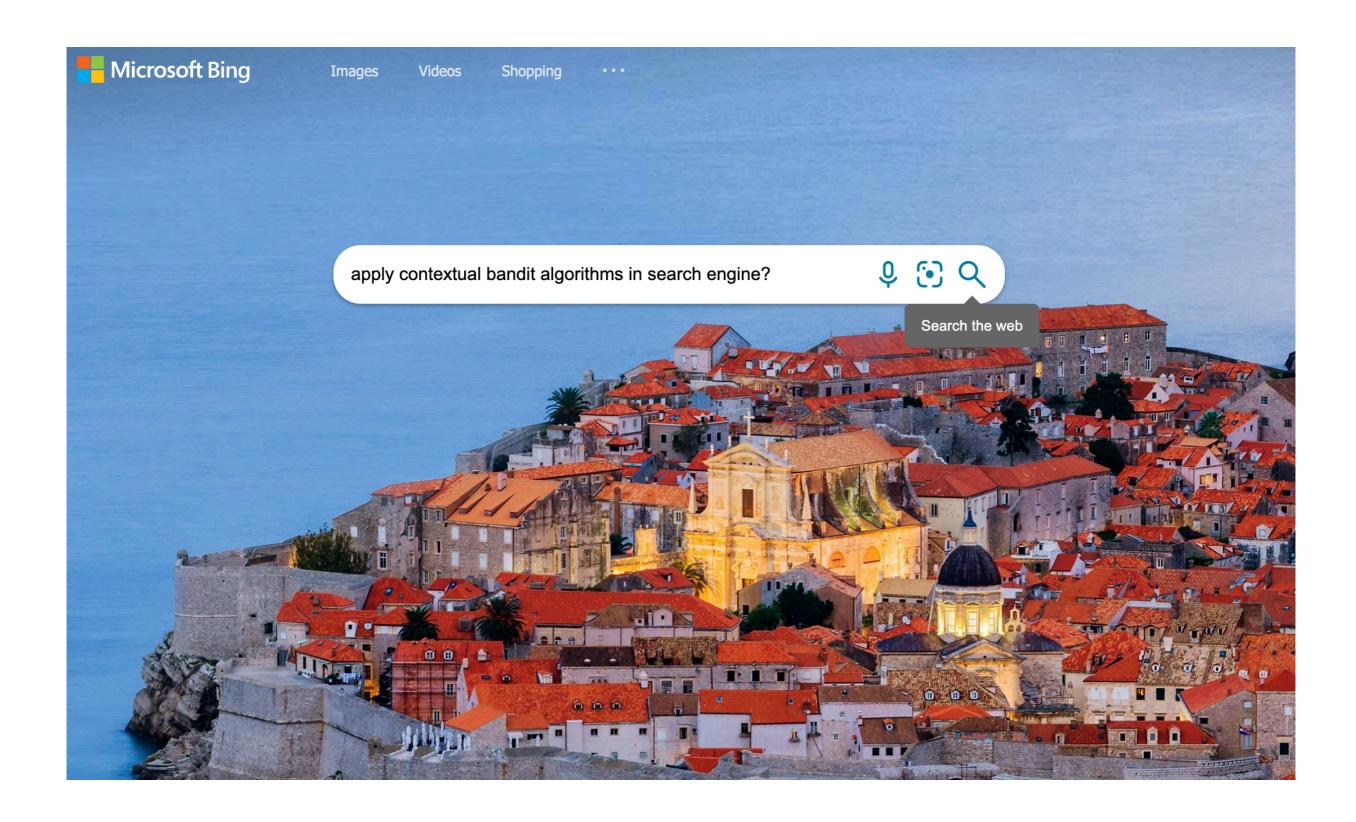




Theorem (Foster et al. 2020, Simchi-Levi et al. 2021)

There exist efficient ALGs that achieve regret $O(\sqrt{AT \log |\mathcal{F}|})$.

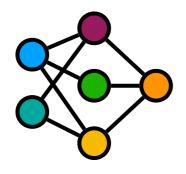
Large-scale recommendations

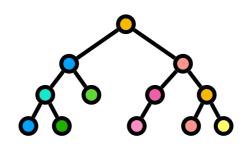


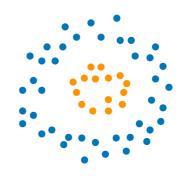
A standard realizability assumption

We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc.







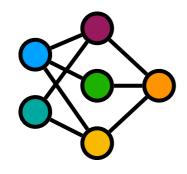
Theorem (Agarwal et al. 2012)

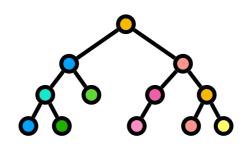
Any CB ALG must suffer worst-case regret $\Omega(\sqrt{AT\log|\mathcal{F}|})$.

A standard realizability assumption

We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} .

Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc.





Theorem (Agarwal et al. 2012)

Any CB ALG must suffer worst-case regret $\Omega(\sqrt{AT\log|\mathcal{F}|})$.

Question: Can we develop efficient ALGs to handle large action space problems?

A modeling assumption

Function approximation

We consider the following model class

$$\mathscr{F} := \{ f_g(x, a) = \langle \phi(x, a), g(x) \rangle : g \in \mathscr{G} \},$$

where $\phi(x, a) \in \mathbb{R}^d$ is known feature embedding, and $\mathcal{G} : \mathcal{X} \to \mathbb{R}^d$ models the unknown context embedding.

A modeling assumption

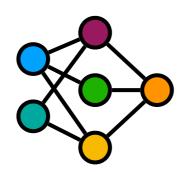
Function approximation

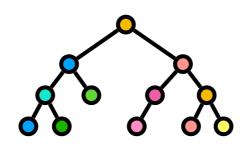
We consider the following model class

$$\mathscr{F} := \{ f_g(x, a) = \langle \phi(x, a), g(x) \rangle : g \in \mathscr{G} \},$$

where $\phi(x, a) \in \mathbb{R}^d$ is known feature embedding, and $\mathcal{G} : \mathcal{X} \to \mathbb{R}^d$ models the unknown context embedding.

- Recover the finite action case when $\phi(x, a)$ is one-hot encoding and linear contextual bandits when $g(x) = \theta$ is constant.
- Allow general models for \$\mathcal{G}\$: Neural nets, decision trees, kernels, etc.





A modeling assumption

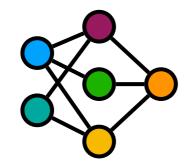
Function approximation

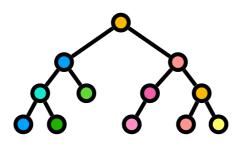
We consider the following model class

$$\mathscr{F} := \{ f_g(x, a) = \langle \phi(x, a), g(x) \rangle : g \in \mathscr{G} \},$$

where $\phi(x, a) \in \mathbb{R}^d$ is known feature embedding, and $\mathcal{G} : \mathcal{X} \to \mathbb{R}^d$ models the unknown context embedding.

- Recover the finite action case when $\phi(x, a)$ is one-hot encoding and linear contextual bandits when $g(x) = \theta$ is constant.
- Allow general models for \mathcal{G} : Neural nets, decision trees, kernels, etc.





Linearly-structured actions with general function approximation

Computational oracles

Regression oracle

Online regression oracle such that

$$\sum_{t=1}^T \left(\hat{f}_t(x_t, a_t) - r_t(a_t)\right)^2 - \inf_{f \in \mathcal{F}} \sum_{t=1}^T \left(f(x_t, a_t) - r_t(a_t)\right)^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T) \,.$$

- $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(\log |\mathscr{F}|)$ for general \mathscr{F} , and $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(d)$ for linear models.
- Standard oracle studied in contextual bandits, e.g., FR '20, Zhang '21.

Computational oracles

Regression oracle

Online regression oracle such that

$$\sum_{t=1}^T \left(\hat{f}_t(x_t, a_t) - r_t(a_t)\right)^2 - \inf_{f \in \mathcal{F}} \sum_{t=1}^T \left(f(x_t, a_t) - r_t(a_t)\right)^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T) \,.$$

- $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(\log |\mathscr{F}|)$ for general \mathscr{F} , and $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(d)$ for linear models.
- Standard oracle studied in contextual bandits, e.g., FR '20, Zhang '21.

Action optimization oracle

For any $\theta \in \mathbb{R}^d$ and $x \in \mathcal{X}$, returns $a^* := \arg \max_{a \in \mathcal{A}} \langle \phi(x, a), \theta \rangle$.

Computational oracles

Regression oracle

Online regression oracle such that

$$\sum_{t=1}^T \left(\hat{f}_t(x_t, a_t) - r_t(a_t)\right)^2 - \inf_{f \in \mathcal{F}} \sum_{t=1}^T \left(f(x_t, a_t) - r_t(a_t)\right)^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T) \,.$$

- $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(\log |\mathscr{F}|)$ for general \mathscr{F} , and $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(d)$ for linear models.
- Standard oracle studied in contextual bandits, e.g., FR '20, Zhang '21.

Action optimization oracle

For any $\theta \in \mathbb{R}^d$ and $x \in \mathcal{X}$, returns $a^* := \arg \max_{a \in \mathcal{A}} \langle \phi(x, a), \theta \rangle$.

- Poly-time algorithms for combinatorial problems; hashing-based MIPS in general.
- Previously studied in linear bandit/pure exploration, e.g., DHK '08, CGLQW '17.

Algorithms and guarantees

Algorithmic framework

At each round t = 1, ..., T:

- Obtain \hat{f}_t from the regression oracle.
- Efficiently compute optimal design wrt a \hat{f}_t -reweighted embedding.
- Sample an action from mixture of optimal design/greedy action.
- Update regression oracle.

Algorithms and guarantees

Algorithmic framework

At each round t = 1, ..., T:

- Obtain \hat{f}_t from the regression oracle.
- Efficiently compute optimal design wrt a \hat{f}_t -reweighted embedding.
- Sample an action from mixture of optimal design/greedy action.
- Update regression oracle.

Key idea: Explore optimal design → generalize across actions.

- Novel \hat{f}_t -reweighted embedding to balance exploration/exploitation.
- Efficient computation of optimal design using action opt. oracle.

Algorithms and guarantees

Algorithmic framework

At each round t = 1, ..., T:

- Obtain \hat{f}_t from the regression oracle.
- Efficiently compute optimal design wrt a \hat{f}_t -reweighted embedding.
- Sample an action from mixture of optimal design/greedy action.
- Update regression oracle.

Key idea: Explore optimal design → generalize across actions.

- Novel \hat{f}_t -reweighted embedding to balance exploration/exploitation.
- Efficient computation of optimal design using action opt. oracle.

Theorem

Our ALG achieves $\sqrt{\text{poly}(d) \cdot T}$ -regret, with per-round O(1) calls to the regression oracle and $\tilde{O}(d^3)$ calls to the linear optimization oracle.

no explicit dependence on # actions both statistically and computationally

A large-scale exhibition

Amazon 3m dataset

A large-scale dataset that aims at predicting commodity identity based on text descriptions.

- Contexts: Text description of a commodity.
- Actions: Around 3 million different commodities.
- Rewards: $r_t(a_t) = \mathbb{I}(x_t \text{ describes commodity } a_t)$.

Table 1: Comparison with the previous state-of-the-art

Algs.	Averaged rewards
Sen et al. 2021	0.19
Ours	0.43