Contextual Bandits with Large Action Spaces: Made Practical Yinglun Zhu¹, Dylan Foster², John Langford², Paul Mineiro² ¹University of Wisconsin-Madison ²Microsoft Research NYC For each round t = 1,..., T: For each round t = 1,..., T: • Receive context x_t . For each round t = 1,..., T: - Receive context x_t . - Select action $a_t \in \mathcal{A} := [1,...,A]$. For each round t = 1,..., T: - Receive context x_t . - Select action $a_t \in \mathcal{A} := [1,...,A]$. - Observe reward $r_t(a_t) \in [-1,1]$. For each round t = 1,...,T: - Receive context x_t . - Select action $a_t \in \mathcal{A} := [1,...,A]$. - Observe reward $r_t(a_t) \in [-1,1]$. For each round t = 1,...,T: - Receive context x_t . - Select action $a_t \in \mathcal{A} := [1,...,A]$. - Observe reward $r_t(a_t) \in [-1,1]$. Goal: Minimize regret $\operatorname{Reg}_{\operatorname{CB}}(T) := \sum_{t=1}^{T} r_t(\pi^*(x_t)) - r_t(a_t)$. A standard realizability assumption We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} . A standard realizability assumption We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} . Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc. A standard realizability assumption We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} . Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc. Theorem (Foster et al. 2020, Simchi-Levi et al. 2021) There exist efficient ALGs that achieve regret $O(\sqrt{AT \log |\mathcal{F}|})$. # Large-scale recommendations A standard realizability assumption We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} . Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc. Theorem (Agarwal et al. 2012) Any CB ALG must suffer worst-case regret $\Omega(\sqrt{AT\log|\mathcal{F}|})$. A standard realizability assumption We assume $f^* := \mathbb{E}[r_t \mid x_t] \in \mathcal{F}$ with a user-specified model class \mathcal{F} . Rich function approximation for \mathcal{F} : Neural nets, decision trees, kernels, etc. Theorem (Agarwal et al. 2012) Any CB ALG must suffer worst-case regret $\Omega(\sqrt{AT\log|\mathcal{F}|})$. Question: Can we develop efficient ALGs to handle large action space problems? ## A modeling assumption #### Function approximation We consider the following model class $$\mathscr{F} := \{ f_g(x, a) = \langle \phi(x, a), g(x) \rangle : g \in \mathscr{G} \},$$ where $\phi(x, a) \in \mathbb{R}^d$ is known feature embedding, and $\mathcal{G} : \mathcal{X} \to \mathbb{R}^d$ models the unknown context embedding. ## A modeling assumption #### Function approximation We consider the following model class $$\mathscr{F} := \{ f_g(x, a) = \langle \phi(x, a), g(x) \rangle : g \in \mathscr{G} \},$$ where $\phi(x, a) \in \mathbb{R}^d$ is known feature embedding, and $\mathcal{G} : \mathcal{X} \to \mathbb{R}^d$ models the unknown context embedding. - Recover the finite action case when $\phi(x, a)$ is one-hot encoding and linear contextual bandits when $g(x) = \theta$ is constant. - Allow general models for \$\mathcal{G}\$: Neural nets, decision trees, kernels, etc. ## A modeling assumption #### Function approximation We consider the following model class $$\mathscr{F} := \{ f_g(x, a) = \langle \phi(x, a), g(x) \rangle : g \in \mathscr{G} \},$$ where $\phi(x, a) \in \mathbb{R}^d$ is known feature embedding, and $\mathcal{G} : \mathcal{X} \to \mathbb{R}^d$ models the unknown context embedding. - Recover the finite action case when $\phi(x, a)$ is one-hot encoding and linear contextual bandits when $g(x) = \theta$ is constant. - Allow general models for \mathcal{G} : Neural nets, decision trees, kernels, etc. Linearly-structured actions with general function approximation ## Computational oracles #### Regression oracle Online regression oracle such that $$\sum_{t=1}^T \left(\hat{f}_t(x_t, a_t) - r_t(a_t)\right)^2 - \inf_{f \in \mathcal{F}} \sum_{t=1}^T \left(f(x_t, a_t) - r_t(a_t)\right)^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T) \,.$$ - $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(\log |\mathscr{F}|)$ for general \mathscr{F} , and $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(d)$ for linear models. - Standard oracle studied in contextual bandits, e.g., FR '20, Zhang '21. ## Computational oracles #### Regression oracle Online regression oracle such that $$\sum_{t=1}^T \left(\hat{f}_t(x_t, a_t) - r_t(a_t)\right)^2 - \inf_{f \in \mathcal{F}} \sum_{t=1}^T \left(f(x_t, a_t) - r_t(a_t)\right)^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T) \,.$$ - $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(\log |\mathscr{F}|)$ for general \mathscr{F} , and $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(d)$ for linear models. - Standard oracle studied in contextual bandits, e.g., FR '20, Zhang '21. #### Action optimization oracle For any $\theta \in \mathbb{R}^d$ and $x \in \mathcal{X}$, returns $a^* := \arg \max_{a \in \mathcal{A}} \langle \phi(x, a), \theta \rangle$. ## Computational oracles #### Regression oracle Online regression oracle such that $$\sum_{t=1}^T \left(\hat{f}_t(x_t, a_t) - r_t(a_t)\right)^2 - \inf_{f \in \mathcal{F}} \sum_{t=1}^T \left(f(x_t, a_t) - r_t(a_t)\right)^2 \leq \mathsf{Reg}_{\mathsf{Sq}}(T) \,.$$ - $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(\log |\mathscr{F}|)$ for general \mathscr{F} , and $\operatorname{Reg}_{\operatorname{Sq}}(T) = O(d)$ for linear models. - Standard oracle studied in contextual bandits, e.g., FR '20, Zhang '21. #### Action optimization oracle For any $\theta \in \mathbb{R}^d$ and $x \in \mathcal{X}$, returns $a^* := \arg \max_{a \in \mathcal{A}} \langle \phi(x, a), \theta \rangle$. - Poly-time algorithms for combinatorial problems; hashing-based MIPS in general. - Previously studied in linear bandit/pure exploration, e.g., DHK '08, CGLQW '17. ## Algorithms and guarantees #### Algorithmic framework At each round t = 1, ..., T: - Obtain \hat{f}_t from the regression oracle. - Efficiently compute optimal design wrt a \hat{f}_t -reweighted embedding. - Sample an action from mixture of optimal design/greedy action. - Update regression oracle. ## Algorithms and guarantees #### Algorithmic framework At each round t = 1, ..., T: - Obtain \hat{f}_t from the regression oracle. - Efficiently compute optimal design wrt a \hat{f}_t -reweighted embedding. - Sample an action from mixture of optimal design/greedy action. - Update regression oracle. Key idea: Explore optimal design → generalize across actions. - Novel \hat{f}_t -reweighted embedding to balance exploration/exploitation. - Efficient computation of optimal design using action opt. oracle. ## Algorithms and guarantees #### Algorithmic framework At each round t = 1, ..., T: - Obtain \hat{f}_t from the regression oracle. - Efficiently compute optimal design wrt a \hat{f}_t -reweighted embedding. - Sample an action from mixture of optimal design/greedy action. - Update regression oracle. Key idea: Explore optimal design → generalize across actions. - Novel \hat{f}_t -reweighted embedding to balance exploration/exploitation. - Efficient computation of optimal design using action opt. oracle. #### Theorem Our ALG achieves $\sqrt{\text{poly}(d) \cdot T}$ -regret, with per-round O(1) calls to the regression oracle and $\tilde{O}(d^3)$ calls to the linear optimization oracle. no explicit dependence on # actions both statistically and computationally ## A large-scale exhibition #### Amazon 3m dataset A large-scale dataset that aims at predicting commodity identity based on text descriptions. - Contexts: Text description of a commodity. - Actions: Around 3 million different commodities. - Rewards: $r_t(a_t) = \mathbb{I}(x_t \text{ describes commodity } a_t)$. Table 1: Comparison with the previous state-of-the-art | Algs. | Averaged rewards | |-----------------|------------------| | Sen et al. 2021 | 0.19 | | Ours | 0.43 |