Decentralized Online Convex Optimization in Networked Systems

Yiheng Lin, Judy Gan, Guannan Qu, Yash Kanoria, and Adam Wierman Thirty-ninth International Conference on Machine Learning

Price at time t: x_t

Price at time t: x_t

Demand at time t: $d_t(x_t)$

Price at time t: x_t

Demand at time t: $d_t(x_t)$

Revenue at time t: $d_t(x_t) \cdot x_t$

Price at time t: x_t

Demand at time t: $d_t(x_t)$

Revenue at time t: $d_t(x_t) \cdot x_t$

$$x_{t-1}$$
 x_t ...

t.

 x_0

Price at time t: x_t

Demand at time t: $d_t(x_t)$

Revenue at time t: $d_t(x_t) \cdot x_t$

$$x_0$$

 x_{t-1}

 x_t

• • •

Maximize total revenue:

$$\max_{x_t} \sum_{t=1}^{T} d_t(x_t) \cdot x_t$$

*Picture credits: HP.

Price at time t: x_t

Demand at time t: $d_t(x_t)$

Revenue at time t: $d_t(x_t) \cdot x_t$

$$x_0$$

 x_{t-1}

 x_t

• • •

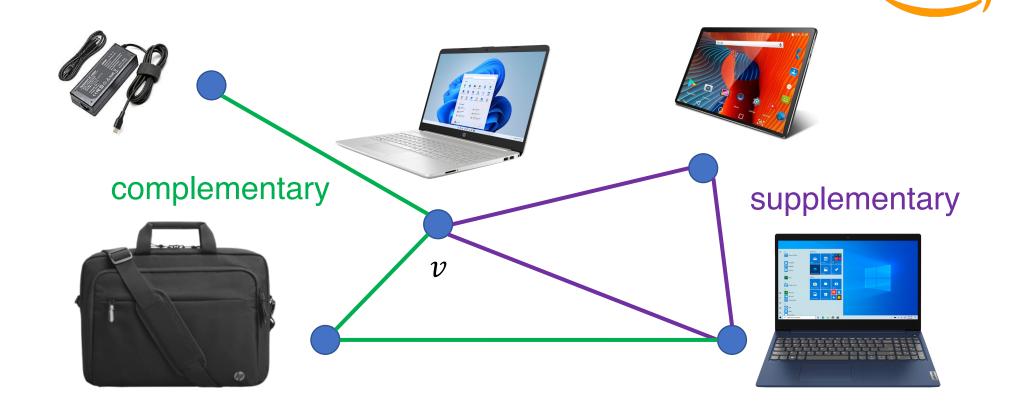
Maximize total revenue:

$$\max_{x_t} \sum_{t=1}^{T} d_t(x_t) \cdot x_t$$

Online Convex Optimization (OCO):

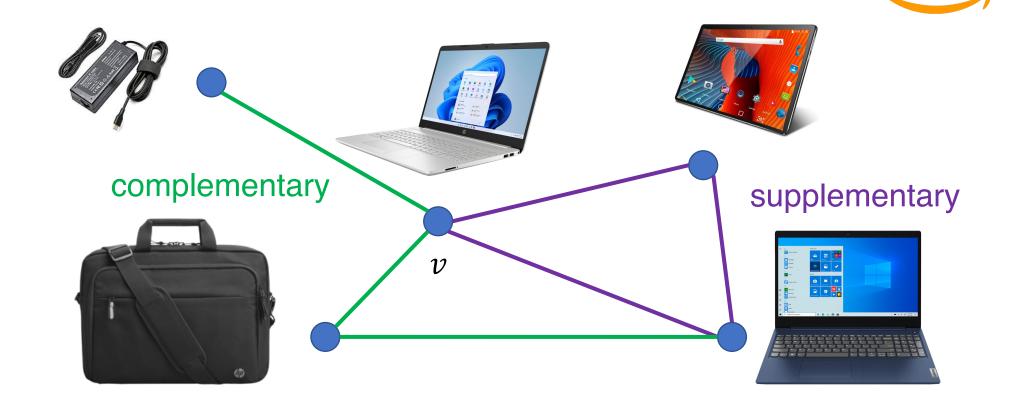
$$\min_{x_t} \sum_{t=1}^{T} f_t(x_t)$$

Complementary-supplementary network



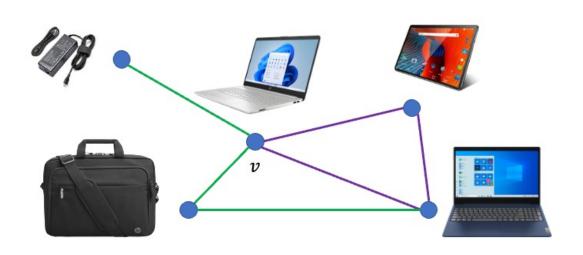
amazon

Complementary-supplementary network



amazon

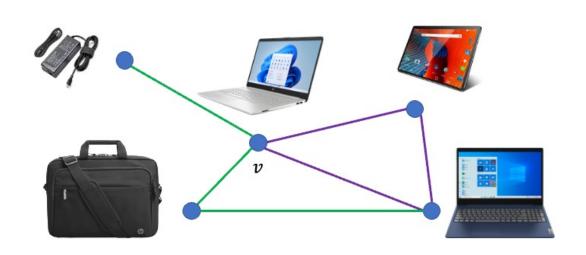
The network can be **huge**: More than 12 million products on Amazon!



For each product v:

Price at time t: x_t^v

^{*}Picture credits: HP, Walmart, Amazon.

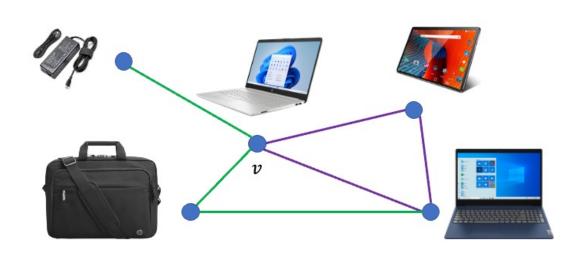


For each product v:

Price at time t: x_t^v

Demand at time $t: d_t^v(x_t^{N_v}, x_{t-1}^v)$

^{*}Picture credits: HP, Walmart, Amazon.



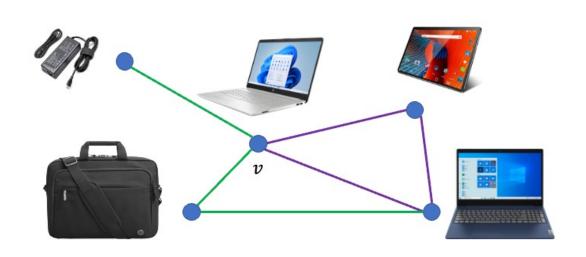
For each product v:

Price at time $t: x_t^v$

Neighbors of v

Demand at time $t: d_t^v(x_t^{\mathbb{N}_v}, x_{t-1}^v)$

^{*}Picture credits: HP, Walmart, Amazon.



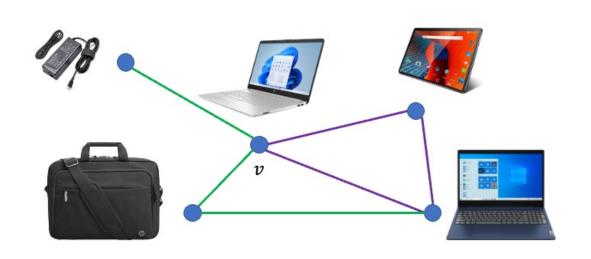
For each product v:

Price at time $t: x_t^v$ Neighbors of v

Demand at time $t: d_t^v(x_t^{\mathbb{N}_v}, x_{t-1}^v)$

Revenue at time $t:d_t^v(x_t^{N_v}, x_{t-1}^v) \cdot x_t^v$

^{*}Picture credits: HP, Walmart, Amazon.



For each product v:

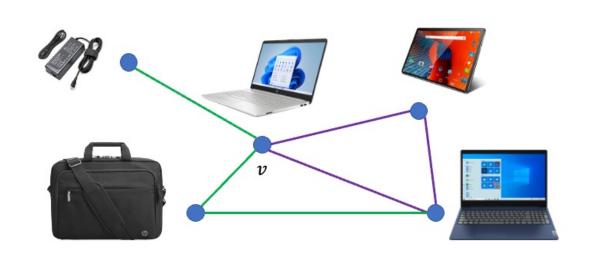
Price at time $t: x_t^v$

Neighbors of v

Demand at time $t: d_t^v(x_t^{\mathbb{N}_v}, x_{t-1}^v)$

Revenue at time $t:d_t^v(x_t^{N_v}, x_{t-1}^v) \cdot x_t^v$

Goal: Maximize the total revenue of all products.



For each product v:

Price at time $t: x_t^v$ Neighbors of v

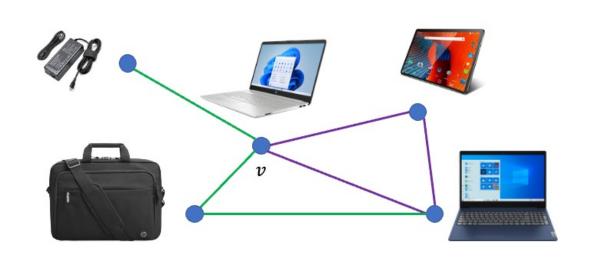
Demand at time $t: d_t^v(x_t^{v_v}, x_{t-1}^v)$

Revenue at time $t:d_t^v(x_t^{N_v}, x_{t-1}^v) \cdot x_t^v$

Goal: Maximize the total revenue of all products.

Applications: Selling a single product

+ multiple products & temporal dynamics



For each product v:

Price at time $t: x_t^v$ N

Neighbors of v

Demand at time $t: d_t^v(x_t^{v_v}, x_{t-1}^v)$

Revenue at time $t:d_t^v(x_t^{N_v}, x_{t-1}^v) \cdot x_t^v$

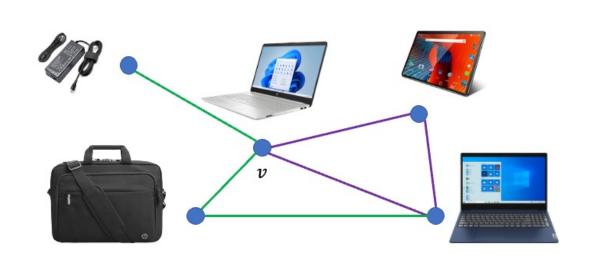
Goal: Maximize the total revenue of all products.

Applications: Selling a single product

+ multiple products & temporal dynamics

Tools:

OCO



For each product v:

Price at time $t: x_t^v$

Neighbors of v

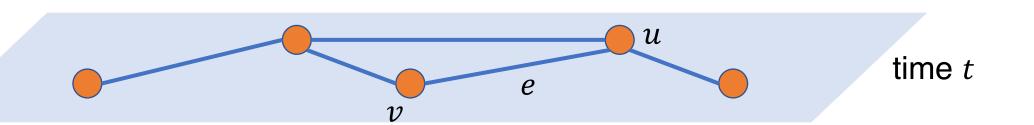
Demand at time $t: d_t^v(x_t^{\mathbb{N}_v}, x_{t-1}^v)$

Revenue at time $t:d_t^v(x_t^{N_v}, x_{t-1}^v) \cdot x_t^v$

Goal: Maximize the total revenue of all products.

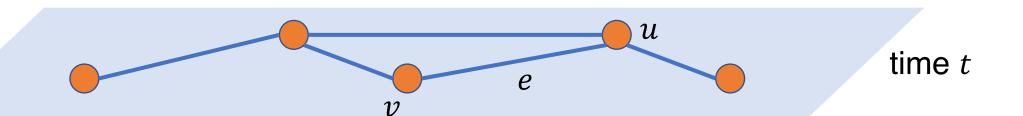
Applications: Selling a single product + multiple products & temporal dynamics

Tools: OCO Networked OCO



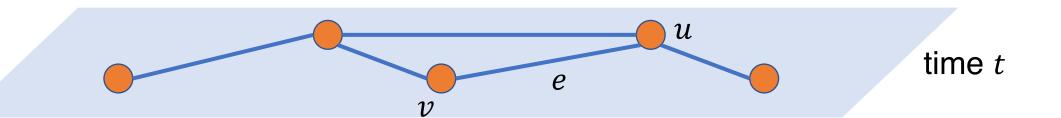
Temporal dimension

• Node cost: $f_t^v(x_t^v)$

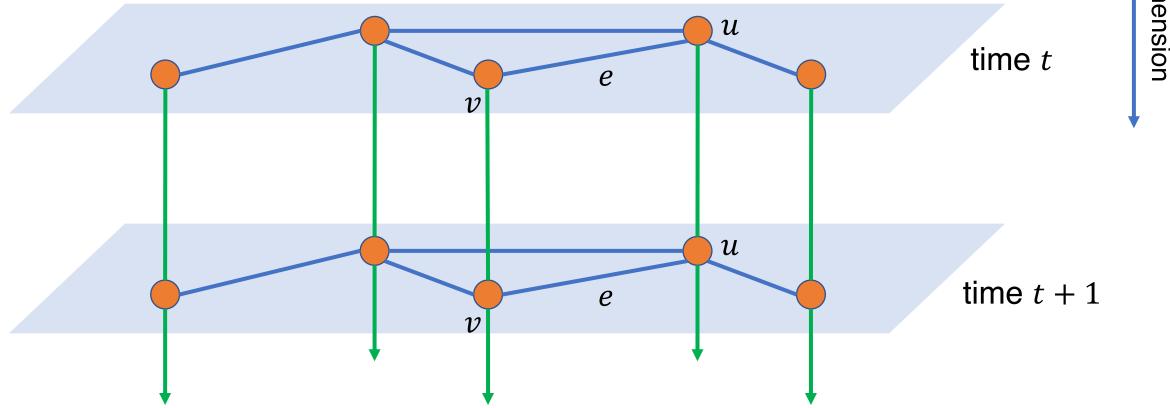


Temporal dimension

• Node cost: $f_t^v(x_t^v)$ ———: Spatial interaction cost: $s_t^e(x_t^v, x_t^u)$

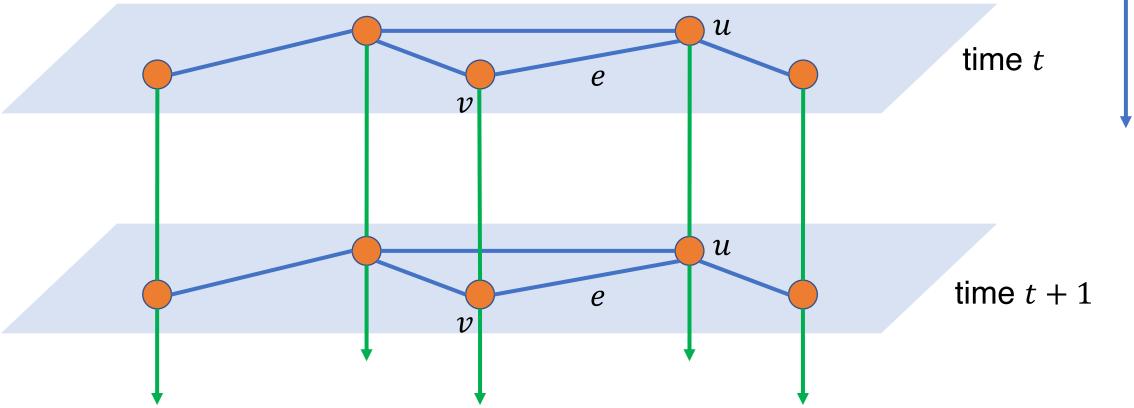


• Node cost: $f_t^v(x_t^v)$ ———: Spatial interaction cost: $s_t^e(x_t^v, x_t^u)$



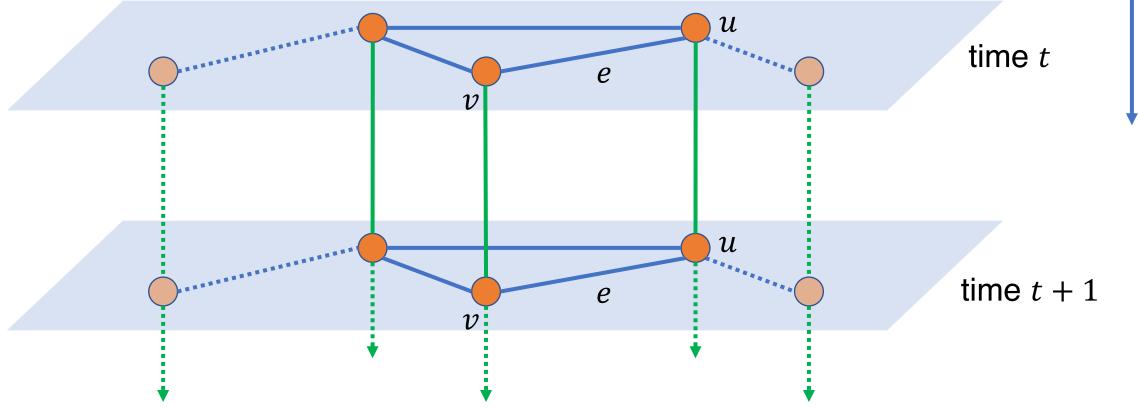
• Node cost: $f_t^v(x_t^v)$ ——: Spatial interaction cost: $s_t^e(x_t^v, x_t^u)$

---- : Temporal interaction cost: $c_t^v(x_t^v, x_{t-1}^v)$



• Node cost: $f_t^v(x_t^v)$ ———: Spatial interaction cost: $s_t^e(x_t^v, x_t^u)$

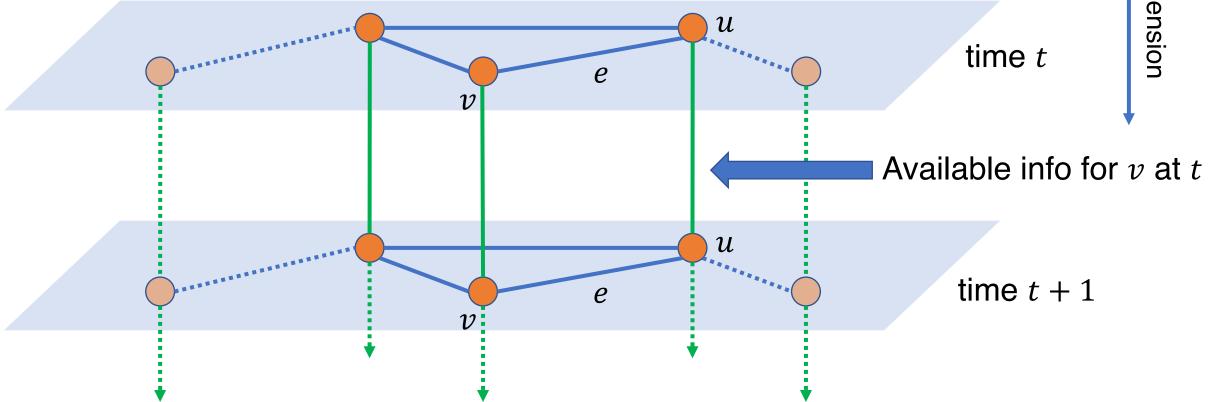
---- : Temporal interaction cost: $c_t^v(x_t^v, x_{t-1}^v)$



Temporal dimension

• Node cost: $f_t^v(x_t^v)$ -----: Spatial interaction cost: $s_t^e(x_t^v, x_t^u)$

---- : Temporal interaction cost: $c_t^v(x_t^v, x_{t-1}^v)$



Theorem (upper bound): We proposed a decentralized online algorithm, Localized Predictive Control, that achieves the competitive ratio of $1 + O(\rho_T^k) + O(\rho_S^r)$.

Theorem (upper bound): We proposed a decentralized online algorithm, Localized Predictive Control, that achieves the competitive ratio of $1 + O(\rho_T^k) + O(\rho_S^r)$.

k: Prediction horizon. r: Communication radius.

Theorem (upper bound): We proposed a decentralized online algorithm, Localized Predictive Control, that achieves the competitive ratio of $1 + O(\rho_T^k) + O(\rho_S^r)$.

k: Prediction horizon. r: Communication radius.

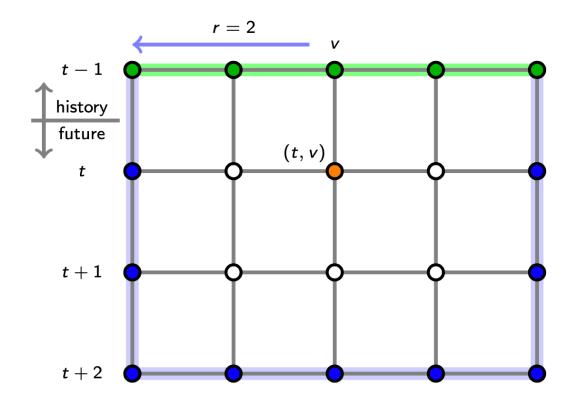
Theorem (lower bound): The competitive ratio of any decentralized online algorithm is lower bounded by $1 + \Omega(\lambda_T^k) + \Omega(\lambda_S^r)$.

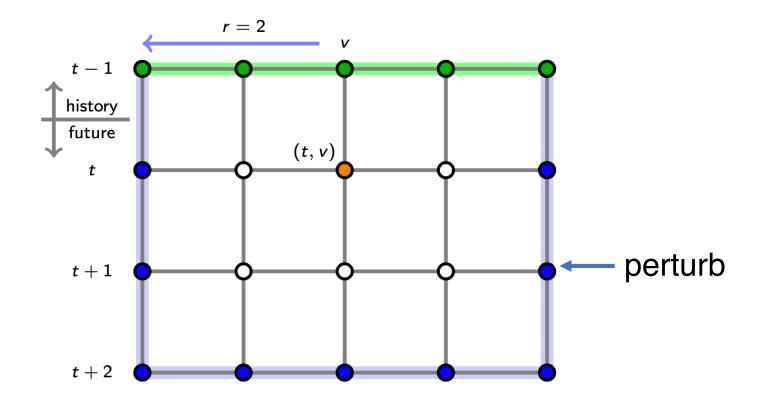
Theorem (upper bound): We proposed a decentralized online algorithm, Localized Predictive Control, that achieves the competitive ratio of $1 + O(\rho_T^k) + O(\rho_S^r)$.

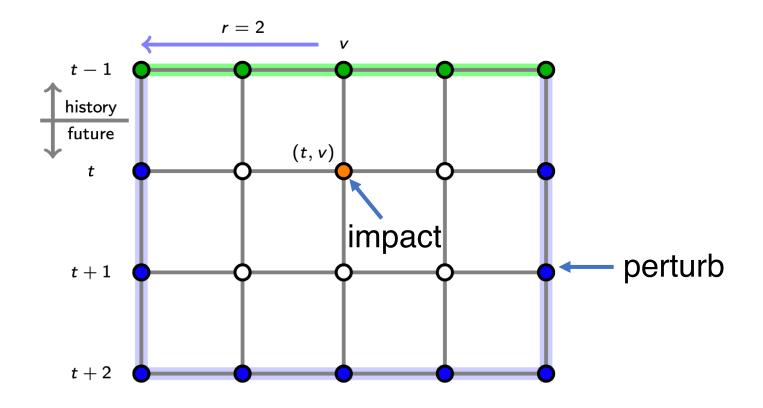
k: Prediction horizon. r: Communication radius.

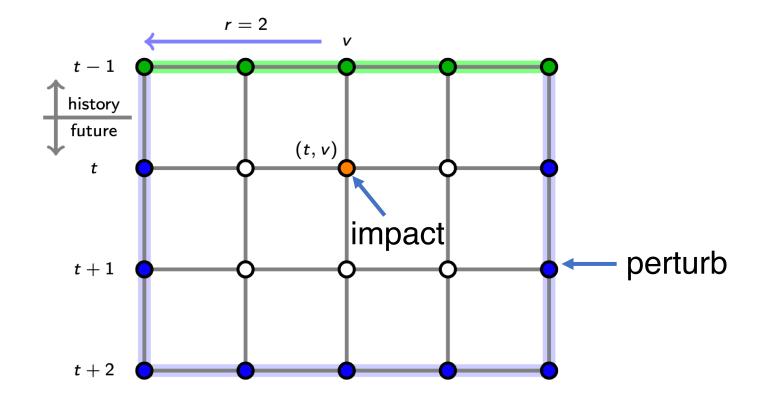
Theorem (lower bound): The competitive ratio of any decentralized online algorithm is lower bounded by $1 + \Omega(\lambda_T^k) + \Omega(\lambda_S^r)$.

The competitive ratio bound for LPC is near optimal!









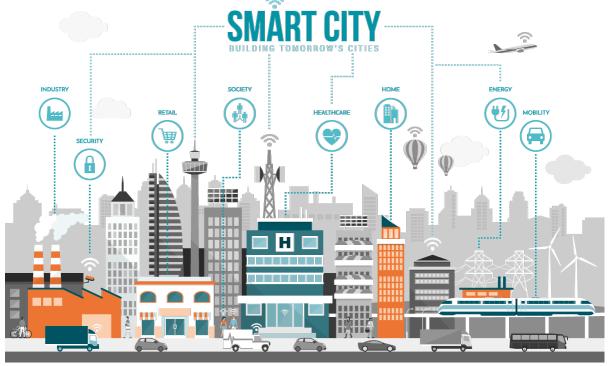
Perturbation bounds for offline optimal Regret & Competitive ratio

Other Applications

Drone swarm

Power grids

Smart city



Decentralized Online Convex Optimization in Networked Systems

Yiheng Lin, Judy Gan, Guannan Qu, Yash Kanoria, and Adam Wierman

Email: yihengl@caltech.edu

