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The network can be huge: More than 12 million products on Amazon!
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NetWO rked OCO Spatial dimension
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Main Results

Theorem (upper bound): We proposed a decentralized online algorithm, Localized
Predictive Control, that achieves the competitive ratio of 1 + 0(pr*) + 0(ps").
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Main Results

Theorem (upper bound): We proposed a decentralized onli ' ocalized
Predictive Control, that achieves the competitive ratio okl + 0(p+*) + 0(ps").
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Theorem (lower bound): The competiti lo of any decentralized online
algorithm is lower bounded by + (1) + Q(As").

The competitive ratio bound for LPC is near optimal!



Method: Perturbation Analysis
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Method: Perturbation Analysis
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Perturbation bounds for offline optimal === Regret & Competitive ratio



Other Applications

Power grids

Drone swarm

Smart city
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