Sauté RL: Almost Surely Safe
Reinforcement Learning Using State
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Safe or Constrained Reinforcement Learning
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* Accumulative constraints can model various settings,
e.g.,:
* Obstacle avoidance
* Fuel constraints
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Issues with the current state-of-the-art

Mean of the accumulated safety cost allows for multiple
constraints violations

X Computational frameworks are brittle

It is not straightforward to create model-based versions of the
algorithms.

Adding different features such as robustness, context dependence
can be problematic
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Sauté RL recipe:

Our safety state tracks how much more cost can
our agent incur before violating the constraint:

t 1
24l = (d - Z A/';”Z(Sm- am))/ﬂfﬁrl'

m=()
We write the safety state in a recursive form:

Zen = (2 = (s, ar)) /i,
zZ) = d

giving us a Markovian, stationary update
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Instead of having one constraint, we
propose an infinity number of equiva-
lent constraints z; > 0 for all t > 0.
Instead of treating them as constraints
we can simply reshape the task costs:

c(spa)) z>0

Enl81 2 @1) = n Zr < 0
+ s

for some large positive n.
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There is no direct limitation for the
applied algorithms. We have tried:

o PETS by Chua et al 2018;

e SAC by Haarnoja et al 2018;

o MBPO by Janner et al 2019;

o TRPO by Schulman et al 2015;
e PPO by Schulman et al 2017.
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Task cost

Sauté RL is plug-n-play (learning curves)

Max safety cost
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Conclusion

\/Safety almost surely

* We have theoretical results showing a guarantee for safety almost surely
\/Generalization to constraint tightening / loosening

* By varying the initial value of the safety state
\/Plug-n-play nature

* Since we modify the environment we can use any RL algorithm model-based or model-

free alike
\/Few new hyper-parameters to tune
* We add only one extra hyper-parameter that is fairly easy to tune.
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Thank you for listening and visit our poster!

Sauté RL recipe:
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