

ICML 2022

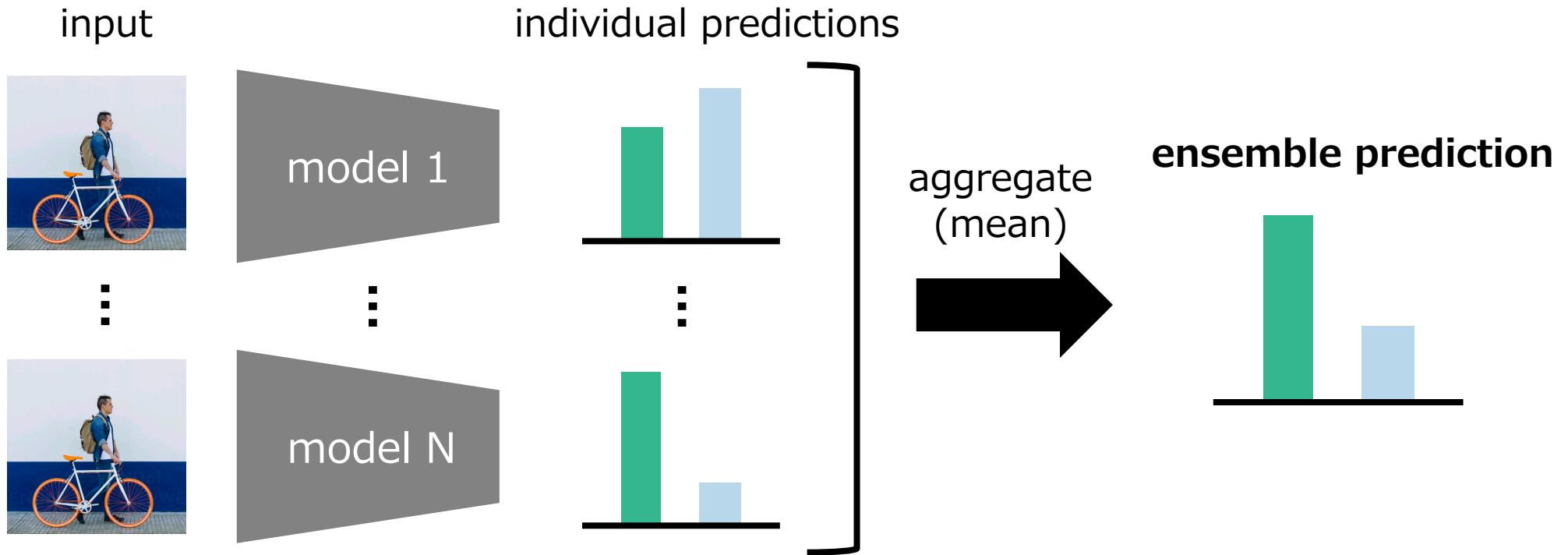
Feature Space Particle Inference for Neural Network Ensembles

Shingo Yashima¹, Teppei Suzuki¹,
Kohta Ishikawa¹, Ikuro Sato^{1,2}, Rei Kawakami^{1,2}

¹Denso IT Laboratory, Inc., Japan

²Tokyo Institute of Technology, Japan

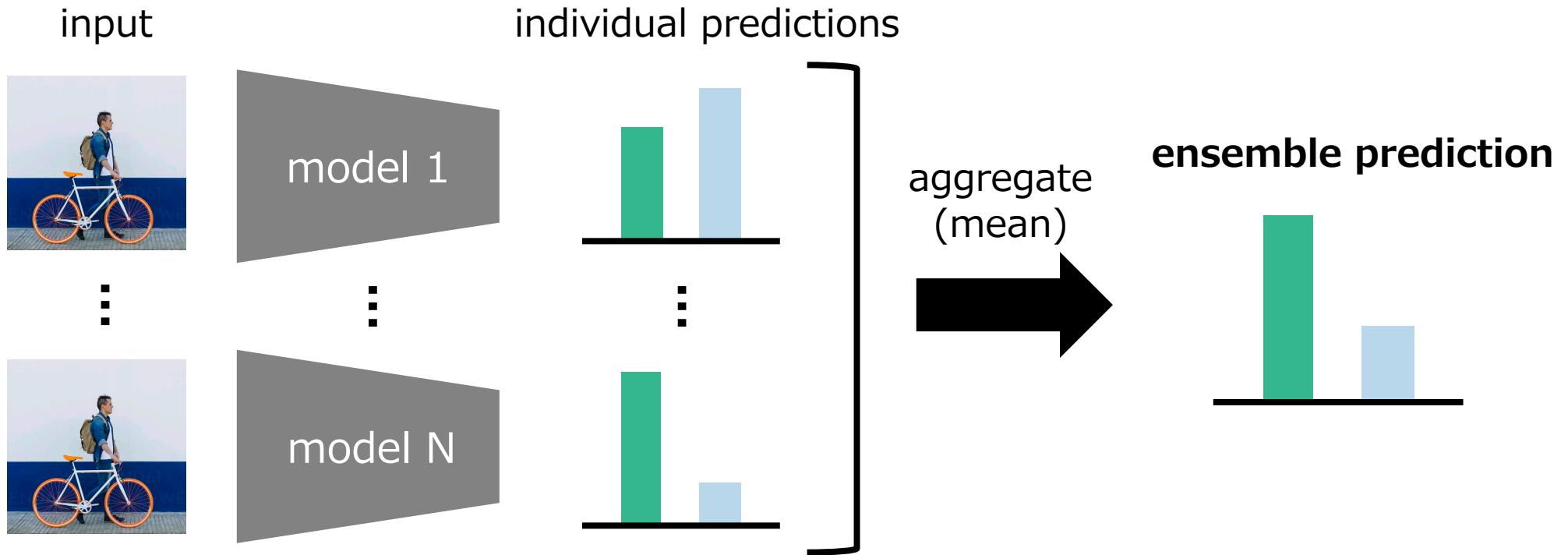
Background: Model Ensemble



Popular approach to improve

- Generalization performance
- Uncertainty quantification
- Robustness to perturbation

Background: Model Ensemble

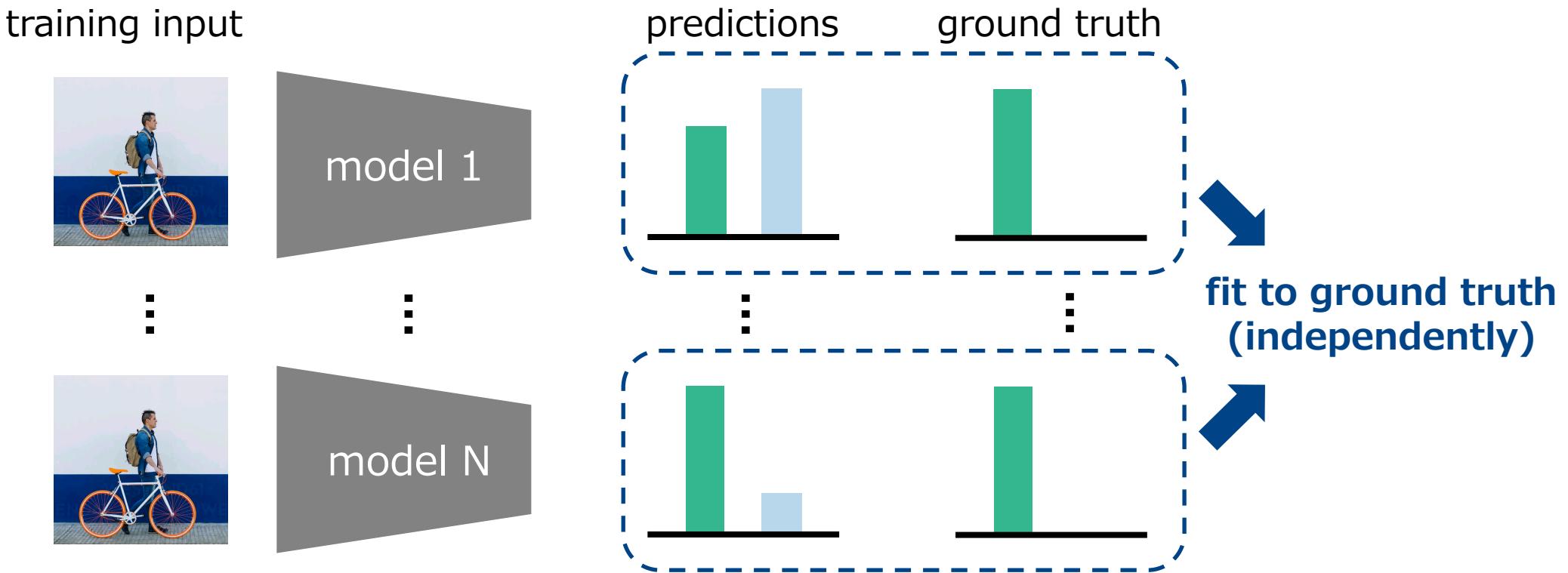


- For robust predictions, individual predictions should be diverse
- There is a **trade-off** between **individual performance** and **ensemble diversity**

What diversity is effective for model ensembles?

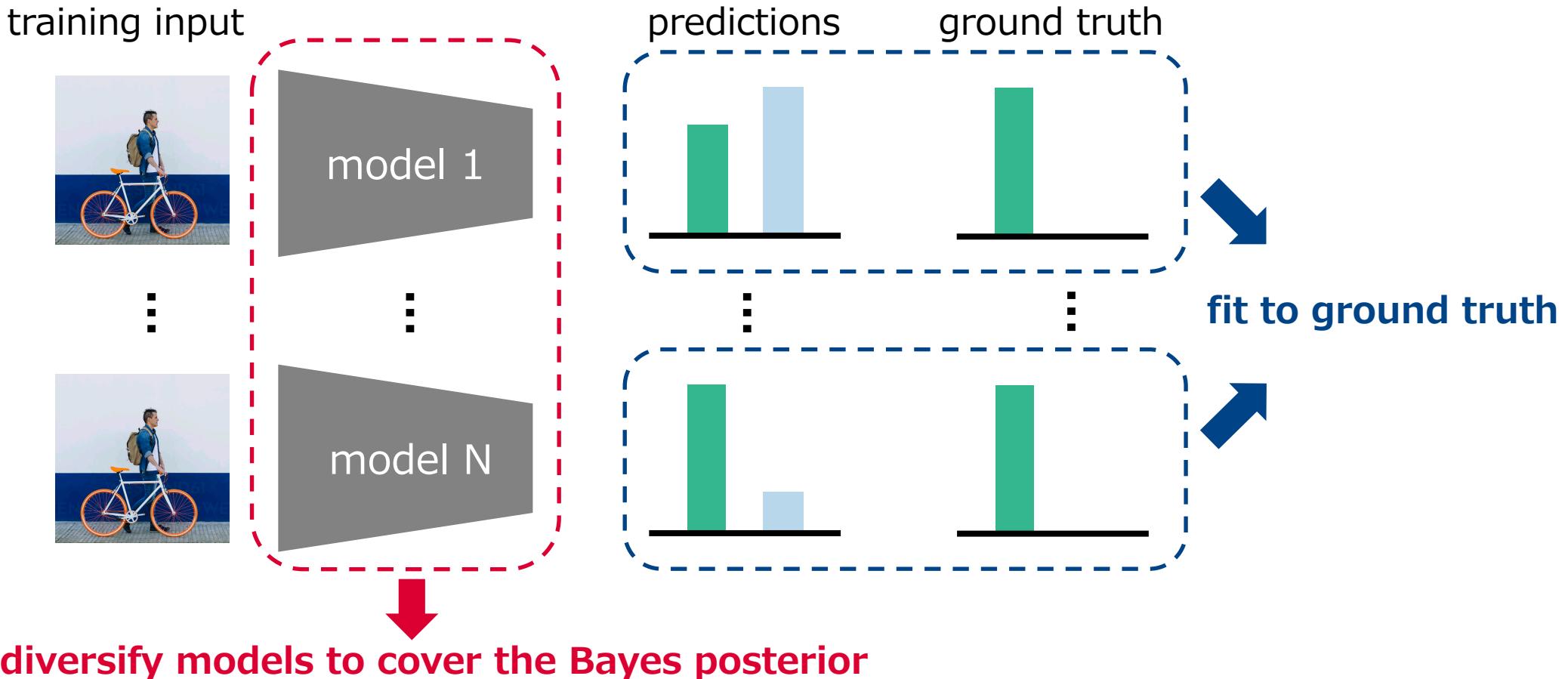
Deep Ensembles

(Lakshminarayanan et al., 2017)



- Train individual models independently
(implicit diversity from randomness in initialization)
- Decent (SOTA) empirical performance

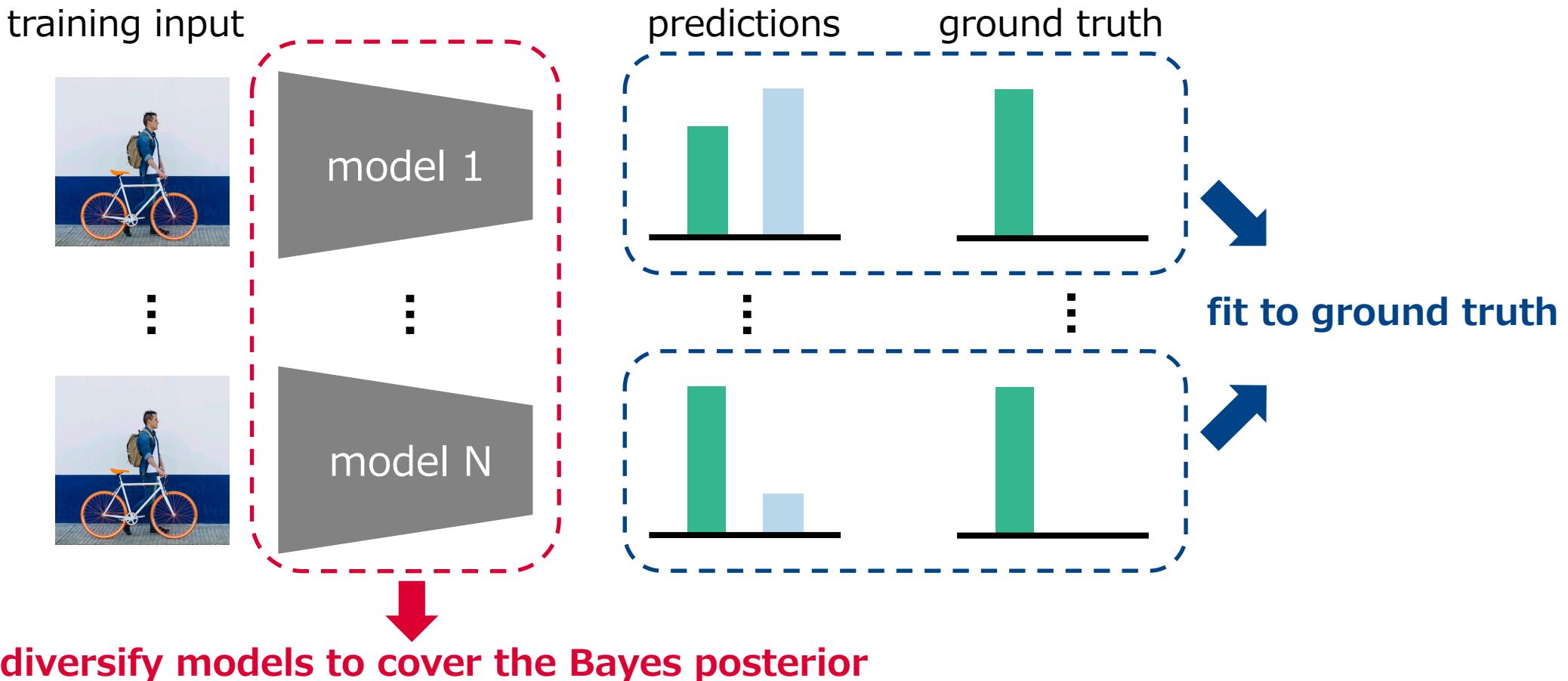
Particle-based Variational Inference



- Nonparametric method to obtaining samples from the Bayes posterior
- When applying to DNNs, they can be seen as Deep Ensembles with repulsive forces

(D'Angelo and Fortuin, 2021)

Particle-based Variational Inference

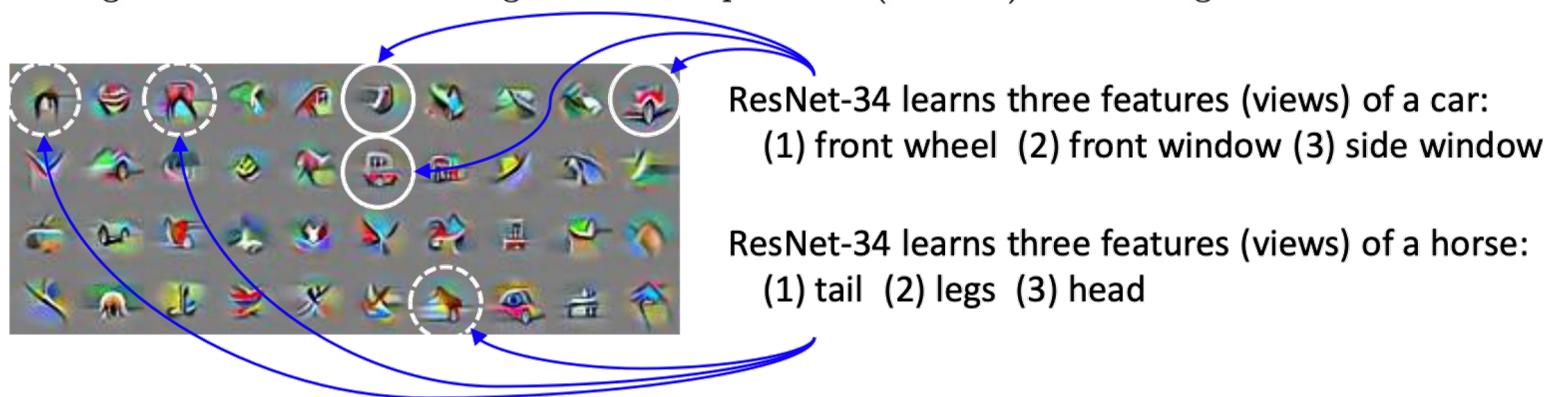


However, the best way to apply these methods to DNNs is unclear:

- Sample from weight-space posterior $p(w|\mathcal{D})$ suffers from **overparameterization**
- Sample from function-space posterior $p(f|\mathcal{D})$ often shows severe **underfitting**

Multi-View Structure (Allen-Zhu et al., 2020)

Figure 4: Illustration of images with multiple views (features) in the ImageNet dataset.

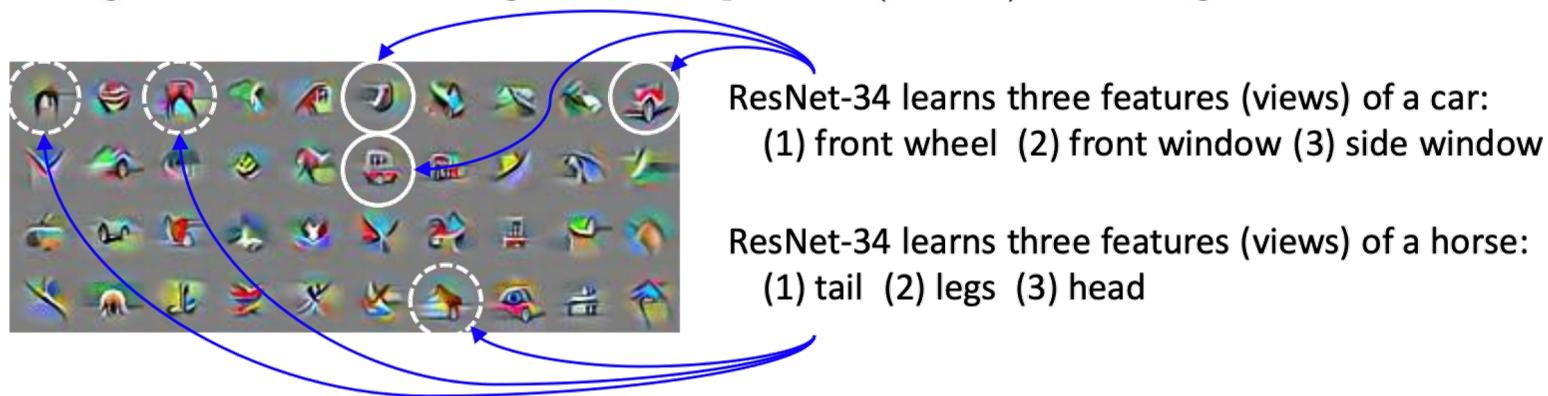


An ensemble of DNNs improve its performance when

- Input images have **multiple features which explain label** (multi-view structure)
- Each model captures **different features from each other**

Multi-View Structure (Allen-Zhu et al., 2020)

Figure 4: Illustration of images with multiple views (features) in the ImageNet dataset.

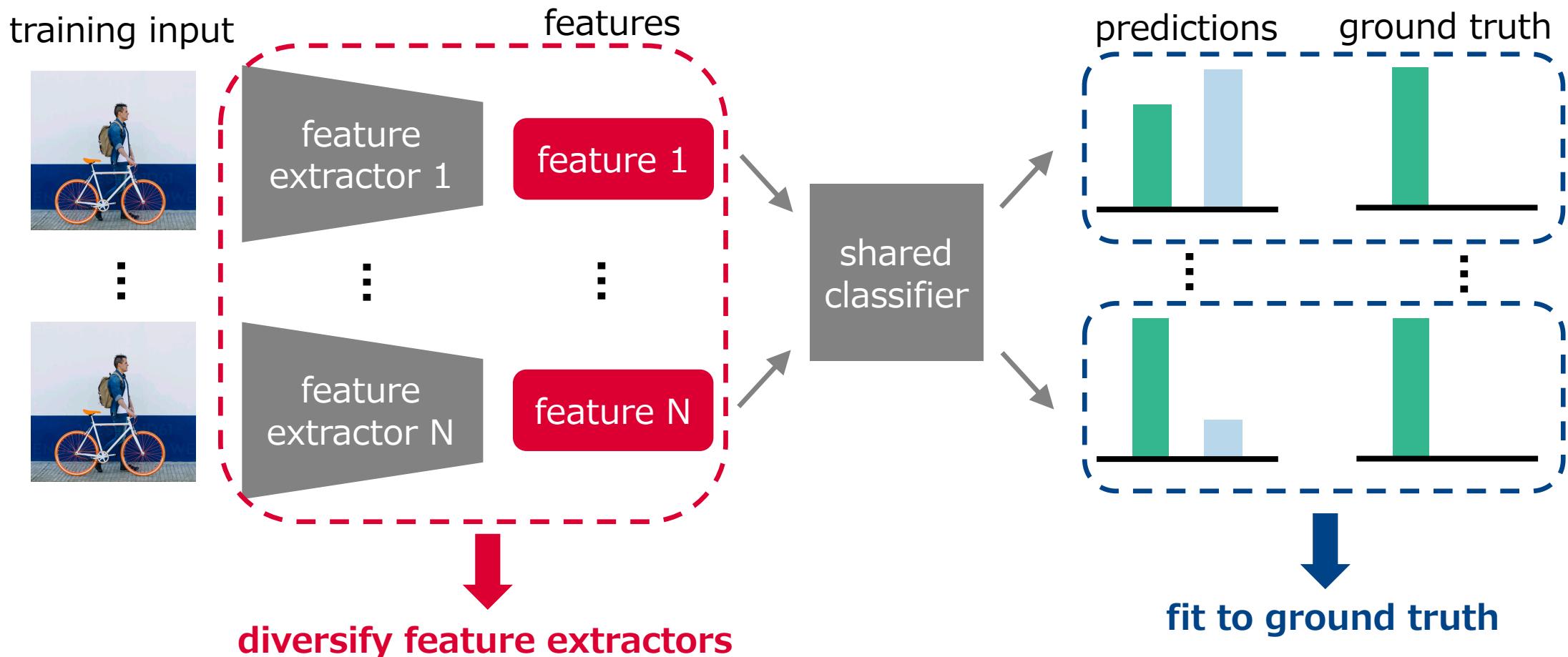


An ensemble of DNNs improve its performance when

- Input images have **multiple features which explain label** (multi-view structure)
- Each model captures **different features from each other**

Hypothesis: Explicitly promoting feature diversity improves ensemble performance

Method Overview



- Divide a model into a feature extractor and a classifier (typically a final dense layer)
- Promote each model to **capture distinct feature** while **classifying data correctly**

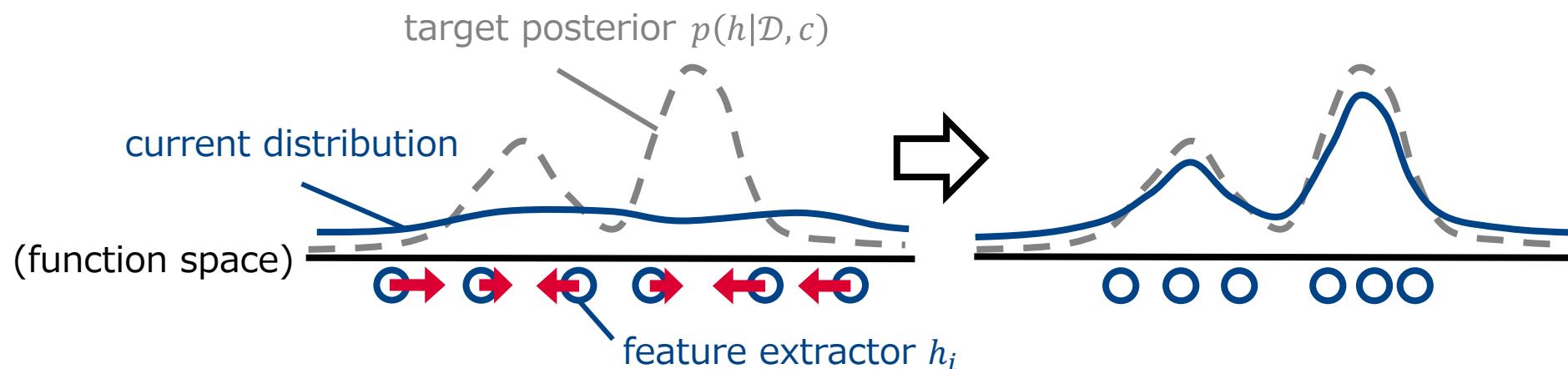
Formulation

Consider the **Bayes posterior** of a feature extractor h given training data and classifier c :

$$p(h|\mathcal{D}, c) \propto \text{prior} \prod_{x,y \in \mathcal{D}} p(y|c(h(x)))$$

posterior

Optimize feature extractors $\{h_i\}_{i=1}^N$ so that they approximate the above posterior using particle-based variational inference



Algorithm

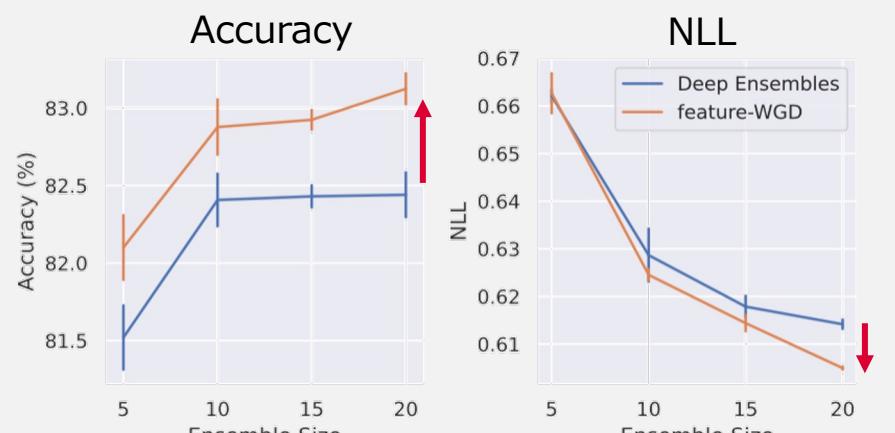
1. Calculate gradient of feature: $\phi(\mathbf{h}_i) = \nabla_{\mathbf{h}_i} \log p(\mathbf{y}|\mathbf{h}_i) + \nabla_{\mathbf{h}_i} \log p(\mathbf{h}_i) + \frac{\sum_j \nabla_{\mathbf{h}_i} k(\mathbf{h}_i, \mathbf{h}_j)}{\sum_j k(\mathbf{h}_i, \mathbf{h}_j)}$
data fitting term
diversify term
(k : p.d. kernel)
2. Update weights by backprop: $w_i \leftarrow w_i + \alpha \frac{\partial \mathbf{h}_i}{\partial w_i} \phi(\mathbf{h}_i)$
 $\mathbf{h}_i := h_i(\mathbf{X})$

- Performing an inference on feature extractors projected on training data points
 $\mathbf{h}_i := h_i(\mathbf{X})$ (Wang et al., 2019)
- To update weights, backpropagate the gradient of feature values

Evaluation: Classification Performance

Classification results on CIFAR-100 with an ensemble size of 10

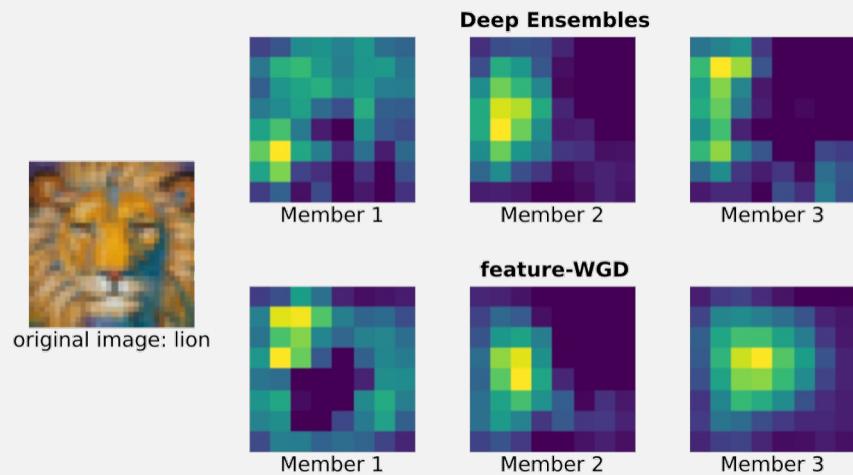
	METHOD	uncertainty estimation			corruption robustness	
		ACCURACY(\uparrow)	NLL(\downarrow)	BRIER(\downarrow)	ECE(\downarrow)	cA / cNLL / cBRIER / cECE
	SINGLE	77.4 \pm 0.3	0.835 \pm 0.007	0.316 \pm 0.003	0.030 \pm 0.003	46.7 / 2.279 / 0.658 / 0.035
independent	DEEP ENSEMBLES	82.3 \pm 0.2	0.632 \pm 0.004	0.249 \pm 0.001	0.020 \pm 0.001	52.9 / 1.971 / 0.590 / 0.032
	WEIGHT-WGD	82.3 \pm 0.1	0.633 \pm 0.002	0.250 \pm 0.001	0.021 \pm 0.001	52.8 / 1.967 / 0.589 / 0.031
diversifying features	FUNCTION-WGD	79.0 \pm 0.1	0.715 \pm 0.003	0.286 \pm 0.001	0.018 \pm 0.002	49.5 / 2.133 / 0.623 / 0.034
	FEATURE-WGD	82.9 \pm 0.2	0.624 \pm 0.002	0.243 \pm 0.001	0.017 \pm 0.001	53.5 / 1.955 / 0.584 / 0.029



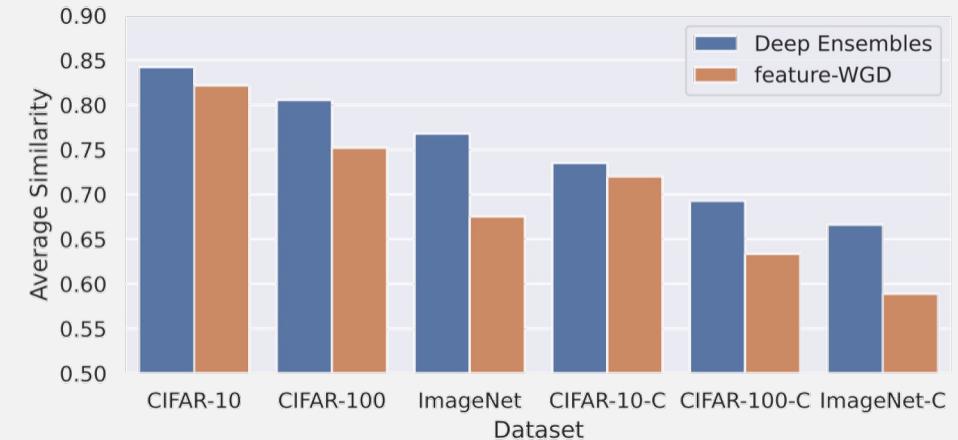
Increasing an ensemble size

- Ours consistently improves Deep Ensembles and weight/function space inferences
- Achieve comparable performance with fewer number of models

Evaluation: Feature Diversity



Class activation map (CAM) on a lion image



Similarity of CAM between ensemble members

- Visualize attention maps using Grad-CAM
- Ours capture more diverse features (e.g., face, mane)

Summary

- Proposed an ensemble method of DNN that explicitly promote feature diversity using Bayesian particle-based variational inference
- Confirmed that proposed method improves Deep Ensembles and weight/function space inference in terms of accuracy, calibration, and robustness
- Code is available at: <https://github.com/DensoITLab/featurePI>