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Motivation

Many real-world applications can be modelled by goal-oriented reinforcement learning.
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Motivation

Many real-world applications can be modelled by goal-oriented reinforcement learning.

Goal-oriented reinforcement learning can be formulated as Stochastic Shortest Path
(SSP) problem.

® Episodic MDP with a goal state.
® The objective is to reach the goal state with minimum cost.
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Motivation

In real-world applications, the state-space is often prohibitively large.

State-Space Complexity
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Function approximation is necessary in practice.

Image source: https://arxiv.org/pdf/1712.06180.pdf
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Our Contributions

We further extend our understanding of SSP with linear function approximation.

Regret Remark
Vd3B3K /cmin Inefficient
(Vial et al., 2021)
K5/% (ignoring other params.) Efficient

Ours

d: feature dimension, cmin: Minimum cost, gap,,,,: Minimum sub-optimality gap
B,: maximum expected cost of optimal policy over all states
T,: maximum hitting time of optimal policy over all states, K: #episodes
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Our Contributions

We further extend our understanding of SSP with linear function approximation.

Regret Remark
Vd3B3K /cmin Inefficient
(Vial et al., 2021)
K5/% (ignoring other params.) Efficient
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Ours

d: feature dimension, cmin: Minimum cost, gap,,,,: Minimum sub-optimality gap
B,: maximum expected cost of optimal policy over all states
T,: maximum hitting time of optimal policy over all states, K: #episodes
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Our Contributions

We further extend our understanding of SSP with linear function approximation.

Regret Remark
(Vial et al., 2021) VB cin Inefficient
K5/% (ignoring other params.) Efficient
VA3B2T, K Efficient
Ours C%:;fsmin In® dfn::( Efficient, gap-dependent bound
W Inefficient, horizon-free regret

d: feature dimension, cmin: Minimum cost, gap,,,,: Minimum sub-optimality gap
B,: maximum expected cost of optimal policy over all states
T,: maximum hitting time of optimal policy over all states, K: #episodes
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Problem Formulation: SSP

An SSP instance is an MDP M = (S, A, sinit, g, ¢, P).

for episode k =1,...,K do
learner starts in state sf = Smit €S,1 1
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Problem Formulation: SSP

An SSP instance is an MDP M = (S, A, sinit, g, ¢, P).

for episode k =1,...,K do
learner starts in state sf = Smit €S,1 1
while s, # g do
L learner chooses action a¥ € A, suffer cost c(s¥, af), and observes state sf, | ~ P
i—i+1 o
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Problem Formulation: SSP

An SSP instance is an MDP M = (S, A, sinit, g, ¢, P).

for episode k =1,...,K do
learner starts in state sf = Smit €S,1 1
while s, # g do
L learner chooses action a¥ € A, suffer cost c(s¥, af), and observes state sf, | ~ P
I i+1 o

Regret: Rk = Z Z ¢ — Z v (Smlt

k=1 i=1
Here, V* = V™, V’r(s) is the expected cost of pollcy 7 starting from s,
T = argmin_cp Zk 1 V7 (Sinit), and I is the set of proper policies which reaches g with
probability 1.
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Problem Formulation: Linear SSP

Linear SSP

There exist known feature map {¢(s, a)}s, ., unknown parameters 6* € R and
{u(s)}sesutey © RY, such that

C(57 a) = ¢(57 a)T0*7 P(SI|S, a) = ¢(57 a)T:u(sl)'

Moreover, we assume ||¢(s, a)||, <1 for any (s,a) € S x A, ||6*|, < Vd, and
|f h(s)du(s")||, < Vd||hll, for any h € RS+
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v K Regret Bound

A natural approach is to compute optimistic value functions to guide exploration.

® |ssue: The value function has circular dependency, which requires computing a fixed
point (hard even for discounted MDP).
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v K Regret Bound

A natural approach is to compute optimistic value functions to guide exploration.
® |ssue: The value function has circular dependency, which requires computing a fixed
point (hard even for discounted MDP).

® In (Vial et al., 2021), they either 1) perform grid search (inefficient), or 2) find a
very inaccurate fixed point with K dependent error (sub-optimal).
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v K Regret Bound

A natural approach is to compute optimistic value functions to guide exploration.
® |ssue: The value function has circular dependency, which requires computing a fixed
point (hard even for discounted MDP).
® In (Vial et al., 2021), they either 1) perform grid search (inefficient), or 2) find a
very inaccurate fixed point with K dependent error (sub-optimal).
Our Solution:
® Finite-horizon approximation to remove circular dependency!
e Directly run LSVI-UCB (Jin et al., 2020) on the finite-horizon MDP.
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Finite-Horizon Approximation

We adopt the finite-horizon approximation scheme in (Cohen et al., 2021).

m |

® M — M: each episode in
M is partitioned into one
or more intervals in M.

»next episode
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Finite-Horizon Approximation

We adopt the finite-horizon approximation scheme in (Cohen et al., 2021).

e M — M: each episode in
M is partitioned into one
or more intervals in M.

e 7 = 7 directly execute 7
as a non-stationary policy

in M.

3?4—1 #9

sPt = s, incur 2B, cost
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Technical Challenges & Contributions

Issue: the analysis proposed in (Cohen et al., 2021) assumes a small state-action space.
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Technical Challenges & Contributions

Issue: the analysis proposed in (Cohen et al., 2021) assumes a small state-action space.
Our Solution: A new analysis of the finite-horizon approximation.

Intuition: separate the intervals into “good” ones (g is reached) and “bad” ones (g is
not reached)

® The large terminal cost implies that each bad interval contributes at least a constant
regret.

® Therefore, the number of bad intervals has to be small, and the number of intervals
M = O(K).

e O(VM)in M = O(VK) in M.
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Technical Challenges & Contributions

Highlights:

® Much simpler analysis

® Model agnostic: Does not leverage any modeling assumption on the SSP instance.
Combining with LSVI-UCB gives the first O(v/K) regret bound efficiently.
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Gap-Dependent Bound

In simpler MDP models, many algorithms are shown to achieve O(C In K) regret, where
C is some gap measure.
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Gap-Dependent Bound

In simpler MDP models, many algorithms are shown to achieve O(C In K) regret, where
C is some gap measure.

® Gap measure: gap,;, = MiNg ,.5ap(s,2)>0 E3P(S; a), where
gap(s,a) = Q*(s,a) — V*(s).

® |ssue: after finite-horizon approximation, the gap measure changes to
gapy(s, a) = Qj(s; a) — Vi(s).
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Gap-Dependent Bound

In simpler MDP models, many algorithms are shown to achieve O(C In K) regret, where
C is some gap measure.

® Gap measure: gap,;, = MiNg ,.5ap(s,2)>0 E3P(S; a), where
gap(s,a) = Q*(s,a) — V*(s).

® |ssue: after finite-horizon approximation, the gap measure changes to
gapy(s, a) = Qj(s; a) — Vi(s).

A)_

Cmin

Our Solution: just need a larger horizon H = (5(
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Gap-Dependent Bound

High level idea: a two stage analysis.
® For the first H/2 layers, we are able to show that Q;(s, a) =~ Q*(s, a), and thus
gapy(s, a) = gap(s, a).
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Gap-Dependent Bound

High level idea: a two stage analysis.
® For the first H/2 layers, we are able to show that Q;(s, a) =~ Q*(s, a), and thus
gaph(57 a) ~ gap(s, a)'
® For the last H/2 layers, we further consider two cases:
® |f the learner's policy is near-optimal in the first H/2 layers, then the probability of

reaching the last H/2 layers is negligible.
® Otherwise, we simply bound the costs by the number of times the learner takes

non-near-optimal actions in the first H/2 layers, which is of order In K.
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Gap-Dependent Bound

High level idea: a two stage analysis.
® For the first H/2 layers, we are able to show that Q;(s, a) =~ Q*(s, a), and thus
gapy(s, a) = gap(s, a).
® For the last H/2 layers, we further consider two cases:

® |f the learner's policy is near-optimal in the first H/2 layers, then the probability of
reaching the last H/2 layers is negligible.

® QOtherwise, we simply bound the costs by the number of times the learner takes
non-near-optimal actions in the first H/2 layers, which is of order In K.

Theorem

z |

B |n5 dB*K)
2 n R .
Cnin83Pmin Cmin

The algorithm described above ensures Rx = O (
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Horizon-Free Regret

The T, or % dependency is mostly likely unnecessary suggested by the lower bound
Q(dB,VK) (Min et al., 2021).

Question: can we obtain horizon-free regret, that is, no polynomial dependency on T, or
19

Cmin
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Horizon-Free Regret

The T, or % dependency is mostly likely unnecessary suggested by the lower bound
Q(dB,VK) (Min et al., 2021).

Question: can we obtain horizon-free regret, that is, no polynomial dependency on T, or
19

Cmin

Challenges: constructing variance-aware confidence bound is highly non-trivial with linear
function approximation, which is known to be the key for obtaining horizon-free regret.

28/34



Horizon-Free Regret

Initialize: t =t' =1, k=1, 51 = s, By = 1.
Define: V,, g(s) = min,[¢(s, a)TW][OQB]. so =&, and V; = V,, B,.

29/34



Horizon-Free Regret

Initialize: t =t' =1, k=1, 51 = s, By = 1.
Define: V,, g(s) = min,[¢(s, a)TW][OQB], so =&, and V; = V,, B,.
while kK < K do
if s;_; = g or some quantity is “doubled” or Vy(s;) = 2B; then
while True do
L Compute w; = argmin,, .o, (w,5,) Vi B, (5t).
if Vi(s:) > B; then B; < 2B, else break.

Record the most recent update time t/ + t.
else (Wt7 Bt) = (Wt—].; Bt—l)-

30/34



Horizon-Free Regret

Initialize: t =t =1, k=1, s; = spujt, B1 = 1.
Define: V,, g(s) = min,[¢(s,a)" w]p 26, 55 = & and Vi = Vi, 5,
while kK < K do
if s;_; = g or some quantity is “doubled” or Vy(s;) = 2B; then
while True do
Compute wy = argmin,,co,(w.5,) Vw,58,(5t)-
if Vi(s:) > B; then B; < 2B, else break.
Record the most recent update time t/ + t.
else (Wt7 Bt) = (Wt—].; Bt—l)-

if s, = g then s;11 = sinit, k < k+1; else s;11 = s;.
Increment time step t < t + 1.

Take action a; = argmin, ¢(s;, a) " w, suffer cost ¢; = c(st, a;), and transits to s.
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Horizon-free Regret

Technical Highlights

® The construction of transition confidence set is similar to (Zhang et al., 2021), but
importantly it computes some fixed point within the decision set.
® Maintain an estimate B; of B,, which waives the knowledge of B;.

e The overestimate update condition Vy/(s;) = 2B; helps remove a d*/* factor.
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Horizon-free Regret

Technical Highlights

® The construction of transition confidence set is similar to (Zhang et al., 2021), but
importantly it computes some fixed point within the decision set.

® Maintain an estimate B; of B,, which waives the knowledge of B;.
e The overestimate update condition Vy/(s;) = 2B; helps remove a d*/* factor.

Theorem

The algorithm described above ensures Rk = O (\/ d'B2K )
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Conclusion

We further extend our understanding of SSP with linear function approximation.

Regret Remark
Vd3B3K /cmin Inefficient
(Vial et al., 2021)
K5/% (ignoring other params.) Efficient
Vd3B2T,. K Efficient

Ours

d*BY |5 dB.K
V) n -
Cin&3Pmin Cmin

Efficient, gap-dependent bound

VA BZK

Inefficient, horizon-free regret

d: feature dimension, cmin: Minimum cost, gap,,,,: Minimum sub-optimality gap
B,: maximum expected cost of optimal policy over all states
T,: maximum hitting time of optimal policy over all states, K: #episodes
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