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Motivation
Adversarial robustness of real-world ML systems?
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ML Model Attacks & Defenses

• Adversarial Training
• Randomized Smoothing
• Pre-processing
• Post-processing
• Detection
• …

(Szegedy et al. 2013, Goodfellow et al. 2015)
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ML Model Attacks & Defenses

• Adversarial Training
• Randomized Smoothing
• Pre-processing
• Post-processing
• Detection
• …

(Szegedy et al. 2013, Goodfellow et al. 2015)

ML System = ML Model + Pre-processing + ...
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Image-Scaling Attacks & Defenses

(Xiao et al. 2019, Quiring et al. 2020)
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Image-Scaling Attacks & Defenses

A Simplified Demonstration
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Practical: Infer the scaling function with black-box queries
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Image-Scaling Attacks & Defenses

A Simplified Demonstration

• Median Filtering
• Randomized Filtering
• Down-scaling + Up-scaling
• Spectrum Detection
• Statistical Test
• …

Source Image (S)
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Attack Image (A)

Image-Scaling
Attack

scale

Output Image (D)

S ≈ A

T ≈ scale(A)

✗

Prediction

+Δ

Practical: Infer the scaling function with black-box queries
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A Broader View of the Entire ML Pipeline
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A Broader View of the Entire ML Pipeline

Scaling
Defenses

Vulnerable 
Scaling

Prediction: Cat

Shape: 672 × 672
Shape: 224 × 224

ML Model
Defenses

Vulnerable 
ML Model

Wait, the model behind 
me can be fooled?

Wait, there is a buggy 
scaling before me?

Defenses are tailored to each component.
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Defenses Hold (Unnecessary) Strong Assumptions
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Defenses Hold (Unnecessary) Strong Assumptions
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“I inject clean images.”

“OK, you only inject clean images.”
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Defenses Hold (Unnecessary) Strong Assumptions

Scaling
Defenses

Vulnerable 
Scaling

Prediction: Cat

Shape: 672 × 672
Shape: 224 × 224

ML Model
Defenses

Vulnerable 
ML Model

What if the adversary is aware of multiple vulnerabilities?

“I inject clean images.”

“OK, you only inject clean images.”

“I perturb the model’s exact input.”

“OK, you only perturb the exact input.”



Scaling-aware Evasion Attacks
A black-box adversary targeting the entire ML pipeline.
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How to Make Attacks “Scaling-aware”?

l Strategy 1: Naively combine two attacks.

ML Attacks

ML Model
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HR Adv. Example
Scaling Attacks
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How to Make Attacks “Scaling-aware”?

l Strategy 1: Naively combine two attacks.

✘ hard to remain adversarial

ML Attacks
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How to Make Attacks “Scaling-aware”?

l Strategy 1: Naively combine two attacks.
l Strategy 2: Adapt existing black-box attacks to the entire pipeline.

ML Attacks
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How to Make Attacks “Scaling-aware”?

l Strategy 1: Naively combine two attacks.
l Strategy 2: Adapt existing black-box attacks to the entire pipeline.

ML Attacks

ML Model
Defenses

Vulnerable 
ML Model

LR Adv. Example

Scaling
Defenses

Vulnerable 
Scaling

HR Adv. Example

✘ cannot exploit scaling by itself
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Typical Decision-based Black-box Attacks
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1. Find a point near the boundary 2. Sample noise to estimate gradient 3. Find a better point
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Typical Decision-based Black-box Attacks
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1. Find a point near the boundary 2. Sample noise to estimate gradient 3. Find a better point
↑ incorporate the vulnerability here
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Main Technique: Scaling-aware Noise Sampling

l Vulnerability lies in the LR space (gray).
l We need noise in the HR space (ball).
l How likely a uniform noise satisfies that? Zero.

HR Space LR Space
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Main Technique: Scaling-aware Noise Sampling

l Vulnerability lies in the LR space (gray).
l We need noise in the HR space (ball).
l How likely a uniform noise satisfies that? Zero.

HR Space LR Space

1. Find the LR projection.

2. Sample noise in LR space.
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Main Technique: Scaling-aware Noise Sampling

l Vulnerability lies in the LR space (gray).
l We need noise in the HR space (ball).
l How likely a uniform noise satisfies that? Zero.

HR Space LR Space

1. Find the LR projection.

2. Sample noise in LR space.

3. Project noise back to HR space.
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How to Inverse the Projection?

HR Space LR Space

1. Find the LR projection.

2. Sample noise in LR space.

3. Project noise back to HR space.



28

How to Inverse the Projection?

l Straightforward inversion.
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How to Inverse the Projection?

l Straightforward inversion.

HR Space LR Space

1. Find the LR projection.

2. Sample noise in LR space.

3. Project noise back to HR space.

LR Noise (sampled)

HR Noise (unknown)
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How to Inverse the Projection?

l Straightforward inversion. LR Noise (sampled)

HR Noise (unknown)

Cost: 1K step SGD for ~1K noise per attack step.
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How to Inverse the Projection?

l Straightforward inversion. LR Noise (sampled)

HR Noise (unknown)

Cost: 1K step SGD for ~1K noise per attack step.

Insight: We do not need a precise solution for a noise.
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How to Inverse the Projection?

l Straightforward inversion.

l Efficient inversion.

LR Noise (sampled)

HR Noise (unknown)
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How to Inverse the Projection?

l Straightforward inversion.

l Efficient inversion.

LR Noise (sampled)

HR Noise (unknown)

Vulnerable Direction

Encode Vulnerability
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How to Inverse the Projection?

l Straightforward inversion.

l Efficient inversion.

LR Noise (sampled)

HR Noise (unknown)

Cost: 1K step SGD ➔ 1 Backward Pass 

Vulnerable Direction

Encode Vulnerability



Amplified Threats
From the interplay between vulnerabilities.
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Evade Scaling Defenses

l Evade 4 out of 5 scaling defenses.
l E.g., no artifacts in the spectrum image.

Original Image Image-Scaling Attack Scaling-aware Attack
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Black-box Attacks: More Query Efficient

l Same query budget, less perturbation.

Attack the full pipeline

Attack only the LR model

Blindly attack the full pipeline
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Black-box Attacks: More Effective

l Same perturbation budget, higher attack success rate.

Attack the full pipeline

Attack only the LR model
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Black-box Attacks: More Practical

l Same improvements on Tencent Image Analysis API

Attack the full pipeline

Attack only the LR model



Conclusions
Implications for trustworthy machine learning.
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Be cautious about unnecessary assumptions.

l Assumptions that make attacks stronger …

l … can make defenses weaker.

l Always consider the strongest adversary in your threat model.

“I inject clean images.”

“I perturb the model’s exact input.”

“OK, you only inject clean images.”

“OK, you only perturb the exact input.”

Good Attack J

Bad Defense L
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Fix bugs, not attacks. 

l Attacks are potentially weak exploits of a bug.

l Fixing weak exploits gives a false sense of security.

l How about adversarial examples?
l Yes, we are still fixing attacks.
l Preventing adversarial examples remain open.

Buggy Scaling
Weak: inject clean images

Strong: inject adversarial perturbation
Fool black-box models
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