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Online Learning with Expert Advice

N Experts—
FOI‘t=1,...,MdOZ 1 2 3 45 6 7 8 9

* Receive advice from N experts, X, € {0,1}" W (0/of1]1]11]1]0
* Predict y; = (p, 1 — pt), pe € [0,1]
* Obtain label y, € {0,1}
» Suffer loss
(Ve ye) = (1 = plgy,=13 + peliy,=0
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Online Learning with Expert Advice

Regret Minimization:

REGy,
= St ye) = min B £(Xe j, )

| ] | ]
| |

Loss of the Loss of the
Algorithm Best Expert




Hedge

In round t, Hedge weights each expert j's advice «
exp (—n2§r=1f(X t',j'yt'))



Hedge: Regret Guarantee

Theorem (Freund and Schapire’ 96). leen L* St mlnzt 1’€(th, yt) < L* then by

j€ln]

setting n appropriately,
REGyeqge < V2L*InN +1InN
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Labels can be expensive to obtain

* Medical diagnoses that may require expensive tests
* Content moderation that requires humans in the loop
* Product testing that may require prolonged experiments



Active Learning

“Actively” decide the most informative points to request the label
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Active Online Learning

N Experts—
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Active Online Learning

Expert advice matrix X € {0,1} *V js
available to the learner

1. Small burn-in phase: “Actively” move
Informative points ahead in the queue

«— M Points
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1 2 3 4 5 6 7 8
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Active Online Learning

N Experts—

1 2 3 4 5 6 7 8 9
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Active Online Learning

Expert advice matrix X € {0,1} *V js
available to the learner

1. Small burn-in phase: “Actively” move
Informative points ahead in the queue

2. Sequentially go through the remaining
points requesting labels for as few
points as possible
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¢ Compactness of Prediction Matrix

Measures the "active learnability” of the prediction matrix X

Actively learnable -> Small ¢ Less actively learnable -> Large ¢



¢ Compactness of Prediction Matrix

Measures the "active learnability” of the prediction matrix X

Actively learnable -> Small ¢ Less actively learnable -> Large ¢

Usually, a small constant
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* Maintains a candidate set of experts I/

ActiveHedge
1. Burn-in Phase:



ActiveHedge

N Experts—

1. Burn-in Phase: B
L . 1]1]afajafafa|1|1
* Maintains a candidate set of experts I/
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ActiveHedge

N Experts—
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ActiveHedge

N Experts—

1. Burn-in Phase: R |
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ActiveHedge: Guarantees

Theorem: Given a { compact advice matrix X, L* s.t.
rg[in]Zé‘ilf(Xt,j,yt) < L*, with probability at least 1 — p,
JEINn

1. ActiveHedge queries at most O({L*) lables
2. The burn in phase is only 0({) long

3. REGactiveredge < V2L*InN +1InN
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Conclusions

* We introduce the active online learning setting

* ActiveHedge can
1. Obtain the same regret guarantee as Hedge
2. Request much fewer labels

Thanksl!



