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Counterfactual Explanations in High-Stakes Applications

💡 Find the “closest” point on the 
other side of the decision boundary

Motivation: Reliably guide an applicant on how they can change the model outcome
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How do we provide counterfactual explanations that are 
not only “closest” but also robust to model changes?



Problem Statement

Given a data point 𝑥 ∈ 𝒳 such that 𝑀(𝑥) ≤ 0.5, our goal is to find a 
counterfactual 𝑥′ with 𝑀(𝑥′) > 0.5 that meets our requirements:

• Close, i.e., ||𝑥 − 𝑥′||𝑝 is low

• Valid after changes to the model, i.e., 𝑀𝑛𝑒𝑤 𝑥′ > 0.5

• Realistic with respect to the data manifold, i.e., has a better LOF
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Related Works: 
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Contribution 1: Counterfactual Stability

A Novel Measure to Quantify Robustness for Tree-Based Ensembles
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where 𝑁𝑥 is a set of 𝐾 points from the distribution 𝑁(𝑥, 𝜎2)
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💡 Identify key properties 
that affect robustness

High mean Low variance



Contribution 2: Conservative Counterfactuals

Nearest neighbor in the dataset on the other side of the decision boundary 
that also has high stability, i.e., 𝑅𝐾,𝜎2(𝑥,𝑀) ≥ 𝜏 (stability test)
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💡 Theoretical Robustness Guarantee

Original Model
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A: Closest Counterfactual

B: Closest Data-Support Counterfactual 

C: Conservative Counterfactual
(Closest Data-Support Counterfactual 
that is also Well-Within the boundary)



Contribution 3: RobX Algorithm

Finds counterfactuals that are close, robust, and realistic

• Can be applied on top of any base-method of counterfactual generation for 
tree-based models, e.g., Feature Tweaking, FOCUS, FACE, kNN, etc.

• Iteratively refines the generated counterfactual and keeps moving it towards 
a conservative counterfactual until 𝑅𝐾,𝜎2(𝑥,𝑀) ≥ 𝜏 (stability test)

Experimental Results on GERMAN CREDIT and HELOC datasets:
More robust (validity) and realistic (LOF) with slight increase in distance (Lp norm)

Thank You!


