Cliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments

Ryan Sullivan, J. K. Terry, Benjamin Black, John P. Dickerson

What is a "Reward Surface"?

Deep reinforcement learning methods indirectly attempt to optimize the expected cumulative discounted rewards achieved by policy.

$$J(\theta) = E_{\tau \sim \pi_{\theta}} R(\tau)$$
 where $R(\tau) = \sum_{t=0}^{n} \gamma^{t} r_{t}$

This produces a "reward surface" in the high-dimensional parameter space of the policy network.

Why should we visualize Reward Surfaces?

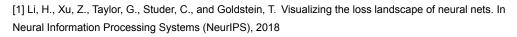
- Visualizing surfaces has lead to fundamental insights for deep learning.
 - E.g. Li et al. 2018¹ visualized loss landscapes to show that that residual connections reduce the non-convexity of image classification tasks.
- Training RL agents can often be unstable with huge drops in performance.
 - \circ $\hfill We want to understand the cause of this issue.$
 - Study failure modes of reinforcement learning.
- Policy gradient methods estimate the gradient of the reward surface.
 - Visualizing reward surfaces may lead to novel insights about policy gradients.

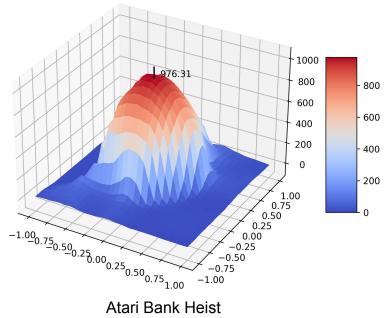
Overview

- Plot reward surfaces for 27 popular environments in OpenAl's Gym.
 - Demonstrate that the visualizations are consistent across multiple seeds.
 - Identified common characteristics across environments in the same set (Atari, Mujoco, etc).
- Discovered "cliffs" in reward surfaces using the gradient direction
 - Identified sudden, sharp decreases in reward in the policy gradient direction of almost every environment.
 - Demonstrated that the cliffs we visualize affect the performance of A2C.

Methodology: Reward Surfaces

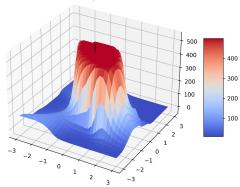
- Choose 2 filter-normalized directions¹ and plot empirical return of a policy network.
- Centered around a policy learned by PPO during training.
- The surface is specific to a particular environment and network architecture, and the center of the plot depends on the learning method and hyperparameters.
- Agents trained using tuned hyperparameters from RL Baselines3 Zoo to compare good regions of the parameter space.



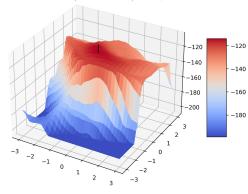


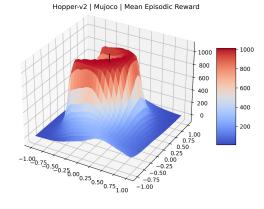
Reward Surface Results

CartPole-v1 | Mean Episodic Reward

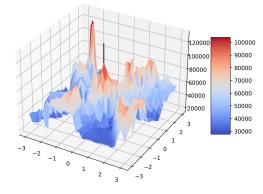


MountainCar-v0 | Classic Control | Mean Episodic Reward

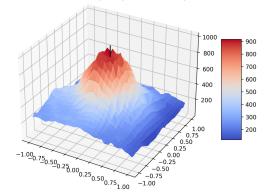




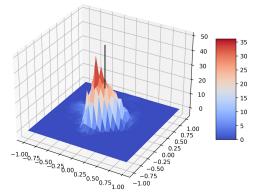
HumanoidStandup-v2 | Mujoco | Mean Episodic Reward



SpaceInvadersNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward

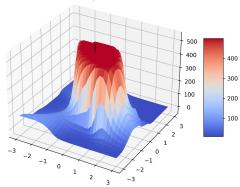


MontezumaRevengeNoFrameskip-v0 | Atari | Sparse | Mean Episodic Reward

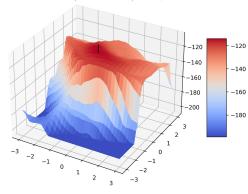


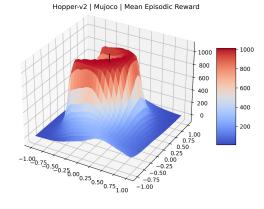
Reward Surface Results

CartPole-v1 | Mean Episodic Reward

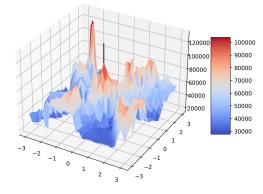


MountainCar-v0 | Classic Control | Mean Episodic Reward

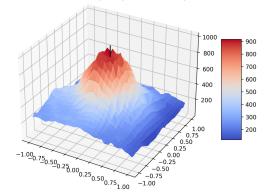




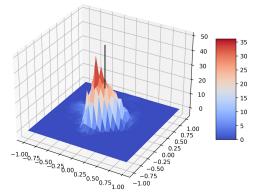
HumanoidStandup-v2 | Mujoco | Mean Episodic Reward



SpaceInvadersNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward

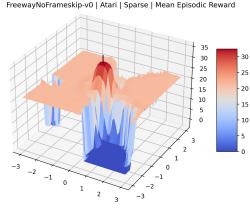


MontezumaRevengeNoFrameskip-v0 | Atari | Sparse | Mean Episodic Reward

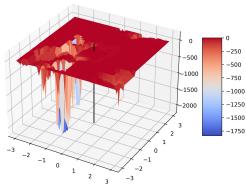


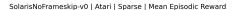
Sparse Rewards

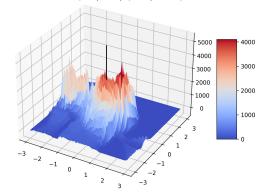
- Sparse reward Atari environments have large flat regions.
- Large policy changes are required to see any variation in rewards.
- Maximizers are spiky even with extremely high sample size.



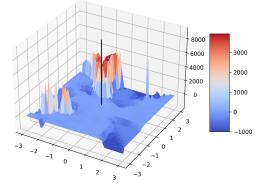
PitfallNoFrameskip-v0 | Atari | Sparse | Mean Episodic Reward







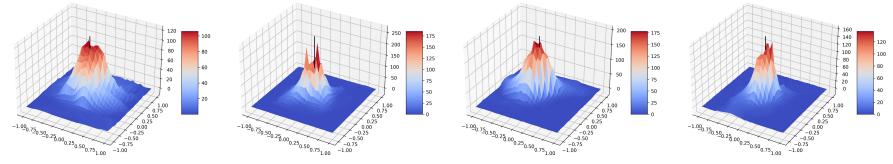
PrivateEyeNoFrameskip-v0 | Atari | Sparse | Mean Episodic Reward



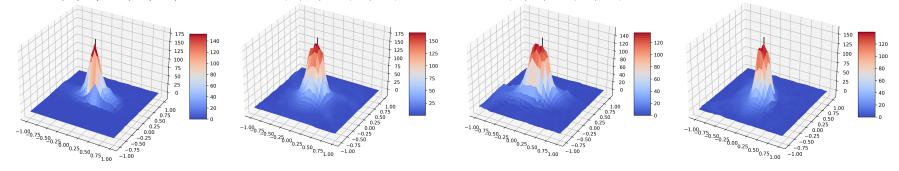
Reproducibility

BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward

BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward

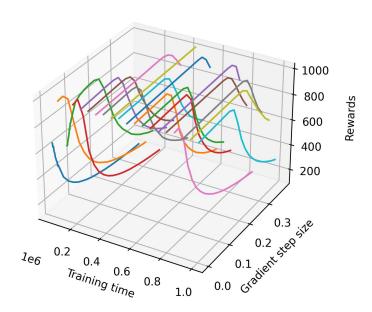


BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Mean Episodic Reward BreakoutNoFrameskip-v0 | Atari | Human Optimal | Human Optimal | Mean Episodic Reward



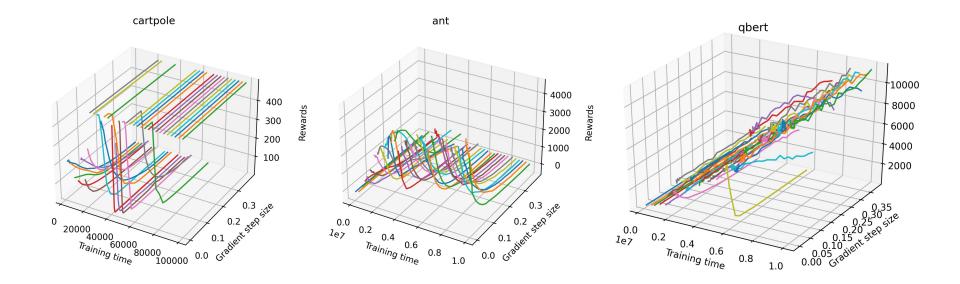
Reward Surfaces using the Gradient Direction

- Line plot of reward surface in a single dimension in the policy gradient direction.
- Individual line for many uniformly distributed checkpoints across training.
- Most environments have at least one if not many "cliffs" sudden, sharp decreases in reward.



hopper

Cliffs in the Gradient Direction



A2C and PPO Cliff Performance

• Table shows percent change in reward after taking a few optimization steps at a checkpoint.

N-steps	Learning Rate	Method	Cliff	Non-Cliff
128	0.000001	A2C	-0.3%	0.2%
128	0.000001	PPO	0.03%	0.03%
128	0.01	A2C	-0.3%	2.0%
128	0.01	PPO	0.0%	0.04%
2048	0.000001	A2C	-0.5%	0.2%
2048	0.000001	PPO	-0.1%	-0.4%
2048	0.01	A2C	-3.9%	2.9%
2048	0.01	PPO	0.1%	0.1%

Library

• The library we used to produce these visualizations is available at:

https://github.com/RyanNavillus/reward-surfaces

- Includes functions to plot 3D reward surfaces and line plots in filter normalized or gradient directions, as well as many other features:
 - Reward surfaces for value functions
 - GIFs of reward surfaces across training
 - Scripts for running experiments on multiple processors or slurm clusters