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Markov Game (S, {Ai}mi=1,P, {ri}mi=1,H).

• Transition Ph(sh+1|sh, ah), reward for i th player ri,h(sh, ah).

• ah is the joint action of all players a = (a(1), . . . , a(m)).
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Learning objectives

• Policy for i th player πi : S × [H]→ ∆Ai .

• Goal: finding optimal policy in the sense of Nash equilibrium: a

product policy π, where no player can gain by deviating from her

own policy while fixing other players’ policies.

• We focus on two-player zero-sum game in this work, where it

remains to achieve sub-linear Regret:

Regret(K ) :=
K∑

k=1

[
V ?
1 (s1)− V µk ,†

1 (s1)
]
.
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• Classical RL:Tabular case

• The numbers of states &

actions are finite and small.

• Strategy: visit all “reachable”

states, and learn directly.
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practice is typically ≥ 10100.

Most states are not visited even

once.

• Strategy: approximate “value”

or “policy” by functions in a

parameteric class F (eg. Deep
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Main results

In this work, we propose the first provably sample-efficient RL algorithm

with general function approximation, GOLF with Exploiter.

Theorem

For zero-sum MGs equipped with a Q-function class F whose

multiagent Bellman-Eluder dimension is d , GOLF with Exploiter learns

an ε-Nash policy within Õ(H2d log(|F|)/ε2) episodes.

Exploiter style of exploration:

• Main agent: play optimistic Nash policy.

• Exploiter: play optimistic best response to the main agent.

Applies to a rich class of models including tabular MGs, MGs with linear

or kernel function approximation, and MGs with rich observations.
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