

Approximately Equivariant Networks for Imperfectly Symmetric Dynamics

Robin Walters* Northeastern University

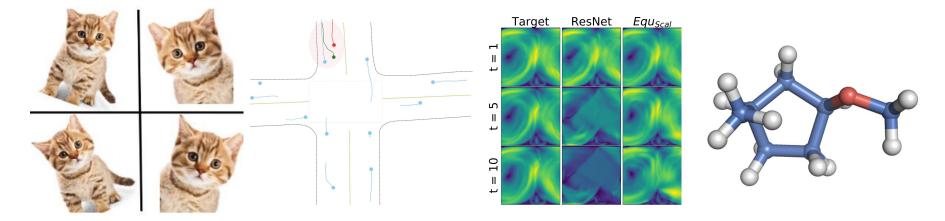
Rose Yu UC San Diego

International Conference on Machine Learning (ICML) 2022

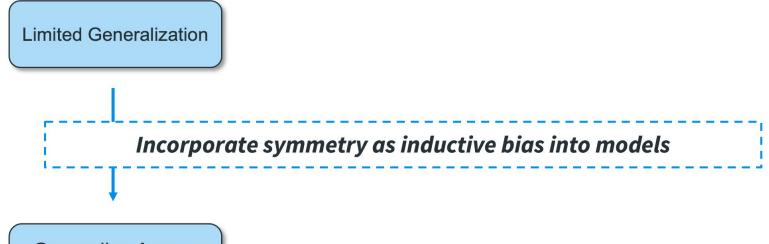
Symmetry and Equivariant Networks

→ Success of Equivariant Networks:

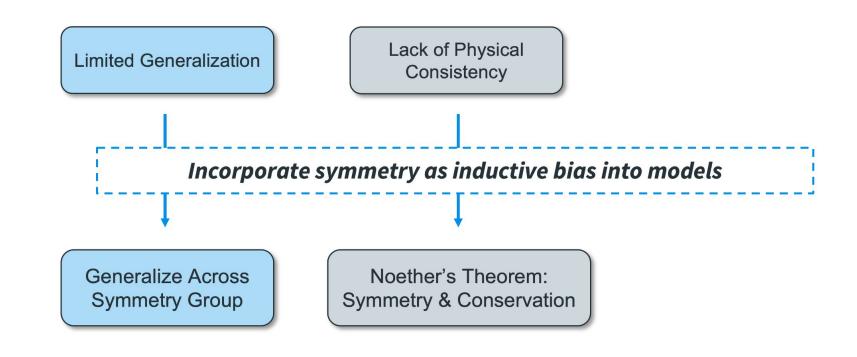
Cohen & Welling. (2016); Ravanbakhsh et al. (2017); Konder & Trivedi (2018); Walters et al.(2021); Wang et al.(2021); Shi et al.(2021)

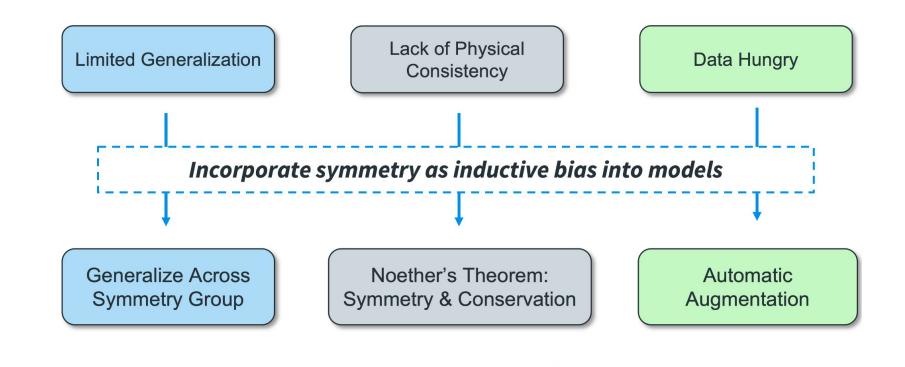


Incorporate symmetry as inductive bias into models



Generalize Across Symmetry Group

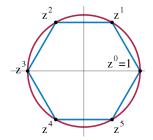




Symmetry and Equivariant Networks

✓ **Group**: A set *G* with an associative binary operation

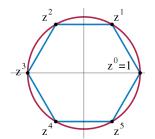
$$\circ: G \times G \to G; \qquad 1 \in G; \qquad \forall g \in G, \exists g^{-1} \in G;$$



Symmetry and Equivariant Networks

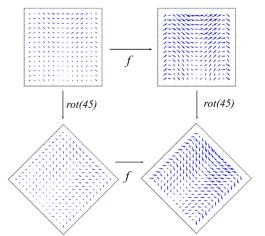
✓ **Group**: A set *G* with an associative binary operation

$$\circ: G \times G \to G;$$
 $1 \in G;$ $\forall g \in G, \exists g^{-1} \in G.$



✓ **Equivariance**: a function $f : X \to Y$ and a group *G*, ρ_{in} acts on *X* and ρ_{out} acts on *Y*

G-equivariant: $f(\rho_{in}(g)x) = \rho_{out}(g)f(x)$



But Real-World Data Rarely Conforms to Strict Symmetry

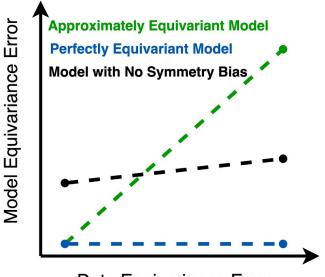
G-approx-equiv: $|f(\rho_{in}(g)x) - \rho_{out}(g)f(x)| < \varepsilon$

Even if the governing equations are symmetric, varying external forces, boundary conditions, or noisy data may break symmetry.

But Real-World Data Rarely Conforms to Strict Symmetry

G-approx-equiv: $|f(\rho_{in}(g)x) - \rho_{out}(g)f(x)| < \varepsilon$

Even if the governing equations are symmetric, varying external forces, boundary conditions, or noisy data may break symmetry.

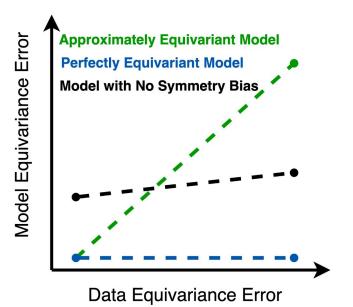


Data Equivariance Error

But Real-World Data Rarely Conforms to Strict Symmetry

G-approx-equiv: $|f(\rho_{in}(g)x) - \rho_{out}(g)f(x)| < \varepsilon$

Even if the governing equations are symmetric, varying external forces, boundary conditions, or noisy data may break symmetry.



Ideal models should **automatically** learn the **correct amount of symmetry**.

Strict Equivariance — Approximate Equivariance

Relaxing weight-sharing constraints in Equivariant Networks by

introducing group element dependent parameters

Strict Equivariance — Approximate Equivariance

Relaxing weight-sharing constraints in Equivariant Networks by introducing group element dependent parameters

Group Convolution

$$[f \star_G \Psi](g) = \sum_{h \in G} f(h) \Psi(g^{-1}h)$$

Strict Equivariance — Approximate Equivariance

Relaxing weight-sharing constraints in Equivariant Networks by introducing group element dependent parameters

Relaxed Group Convolution

$$[f \star_G \Psi](g) = \sum_{h \in G} f(h) \Psi(g^{-1}h) \quad \longrightarrow \quad [f \tilde{\star}_G \Psi](g) = \sum_{h \in G} \sum_{l=1}^L f(h) W_l(g^{-1}h)$$

Strict Equivariance — Approximate Equivariance

Steerable Convolution $\Phi(hx) = \rho_{out}(h)\Phi(x)\rho_{in}(h^{-1}), \forall h \in H$

```
\sum_{\mathbf{y}\in\mathbb{Z}^2}\sum_{l=1}^L (w_l \odot \Phi_l(\mathbf{y})) f_{\mathrm{in}}(\mathbf{x}+\mathbf{y})w \in \mathbb{R}^{c_{\mathrm{out}} \times c_{\mathrm{in}} \times L}
```

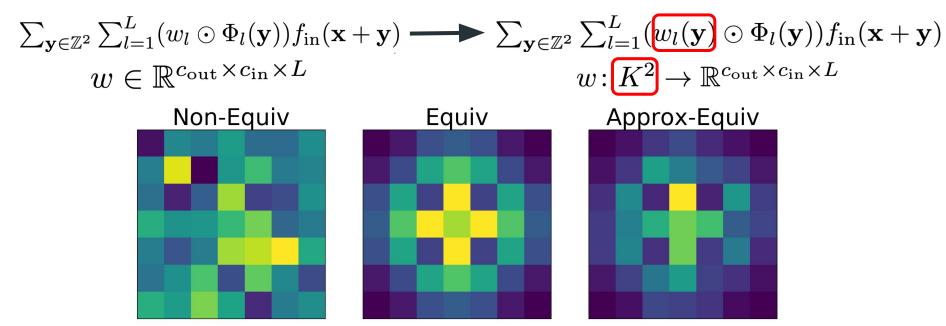
Strict Equivariance — Approximate Equivariance

Relaxed Steerable Convolution $\Phi(hx) = \rho_{out}(h)\Phi(x)\rho_{in}(h^{-1}), \forall h \in H$

$$\sum_{\mathbf{y}\in\mathbb{Z}^2}\sum_{l=1}^{L}(w_l\odot\Phi_l(\mathbf{y}))f_{\mathrm{in}}(\mathbf{x}+\mathbf{y}) \longrightarrow \sum_{\mathbf{y}\in\mathbb{Z}^2}\sum_{l=1}^{L}(w_l(\mathbf{y})\odot\Phi_l(\mathbf{y}))f_{\mathrm{in}}(\mathbf{x}+\mathbf{y})$$
$$w\in\mathbb{R}^{c_{\mathrm{out}}\times c_{\mathrm{in}}\times L} \qquad w:K^2\to\mathbb{R}^{c_{\mathrm{out}}\times c_{\mathrm{in}}\times L}$$

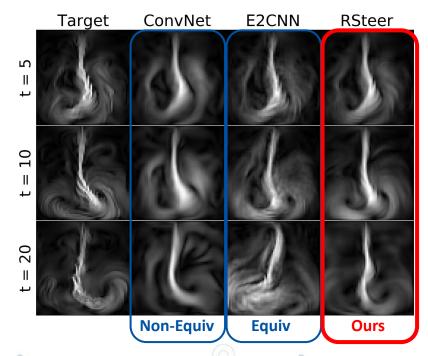
Strict Equivariance — Approximate Equivariance

Relaxed Steerable Convolution $\Phi(hx) = \rho_{out}(h)\Phi(x)\rho_{in}(h^{-1}), \forall h \in H$

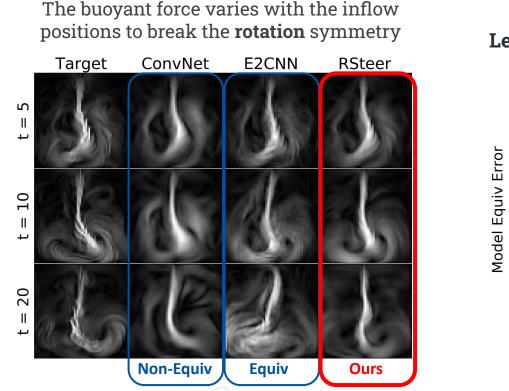


Improved Prediction on Fluid Dynamics

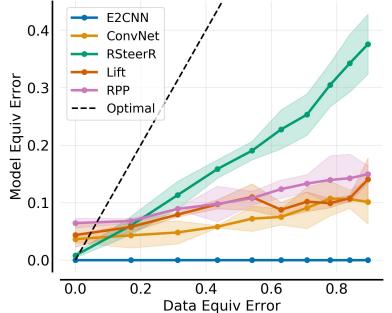
The buoyant force varies with the inflow positions to break the **rotation** symmetry



Improved Prediction on Fluid Dynamics



Learning Different Levels of Equivariance



Conclusion

- We propose new classes of approximately equivariant networks by relaxing the weight-sharing schemes.
- Our proposed networks **outperform** models with no symmetry bias or with overly strict symmetry constraints on **both simulations and real-world data**.
- Future work includes applying our work to graph neural networks, theoretical analysis and designing approx-equiv tensor field networks.

Thanks for Listening!

ruw020@ucsd.edu 🔰 @rayruw

https://github.com/Rose-STL-Lab/Approximately-Equivariant-Nets