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For eachround r =1,...,T:
* Receive context x,. o bl NW e
e Select action g, € .

e Observe loss #Z(a,) € [0,1].

More than 2 million Imagine Cup
Take a behind-the-scenes tour of Microsoft's competitors change the world over 20 years
datacenter operations > of innovation >

. Minimize regret Reg.(T) := Zth £(a)— (" (x)).
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A standard assumption

We assume f* := E[Z, | x] € F with a user-specified model class
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Theorem (Foster et al. 2020, Simchi-Levi et al. 2021)
There exist efficient ALGs that achieve regret O/ || T log| #|).
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Existing guarantees

A standard assumption

We assume f* := E[Z, | x] € F with a user-specified model class

for #: Neural nets, decision trees, kernels, etc.

£ 2

Theorem (Agarwal et al. 2012)

Any CB ALG must sutfer worst-case regret Q(/ |/ | T log| & |).

Question: Can we develop efficient ALGs to handle large action space problems?
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Adding additional structural assumptions

Linearity

ftakes the form f(x, a) := (¢(x, a), 0) for
an unknown 6 € R¢.

Studied in AL '99, Auer '02, CLRS 11, APS, "11, etc. | eads to dﬁ’ regret
Lipschitzness
fis a 1-Lipschitz function.

Leads to 7?3 regret Studied in Agr 95, Kle ‘04, AOS ‘07, Sli, '14, etc.

Led to fruitful theoretical developments; but assumptions can be violated.
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Difficulty : Need to handle general unstructured regression functions.
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Competing against weaker benchmarks

A=1[0,1]
f*(:Uta a)
Compete against
Let u be a base probability measure. Smoothy(x,) := inf E,_,[f*(x. )]
Fix i € (0,1]. Define @, := {Q : dQ/du < 1/h} OcQ)
e Stronger than previous proposed smoothed benchmarks,
e.g., Chaudhuri et al. 2018, Krishnamurthy et al. 2020.
. Minimize Regg ,(T) = ¥, [*(xsa) — Smoothy(x)
' CB.h - 1 %1 A

e Recover minimax guarantees under standard regret and additional structural assumptions
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Online regression oracle such that
T

T
Z (J? (xp,a) —C t(at)>2 — ]}EH; Z (f (x,a) =7 t(at)>2 < Regsq(T) :
=1

=1

* Regg (T) = O(log| F ) for general & using Vovk's aggregation algorithm (Vovk 98).
- Standard oracle studied in contextual bandits, e.g., FR '20, Zhang 21.

Sample action a ~ u from the base probability measure u.

* O(H(p)) time to generate a random sample a ~ u using DDG Tree (KY '76).
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SquareCB (Foster et al. 2020)

Ateachroundr =1,...,T:
- Obtain x, from nature and f, from regression oracle.
. Compute greedy action @, := arg min f,(x,, a).

acsd

« Construct inverse-gap-weighted
| |

|| +y- (ft(xt7 a) _ft(xt’ Zl\t))
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SmoothlGW

At eachroundt=1,...,T:
- Obtain x, from nature and f, from regression oracle.

. Compute greedy action @, := arg min f,(x,, a).
acd

« Construct inverse-gap-weighted
1/h

Uty (Fna) — fxn @)

» Sample action a, ~ p, + (1 — p(A)) - 1;.
» Observe loss #(a,) and update regression oracle.

Efficient rejection sampling

e Sample d, ~ u from base measure u w/ sampling oracle.
e Sample Z from a Bernoulli dist. with mean dp,/du(d,).
e Play d,if Z=1; play a, otherwise.




Theoretical guarantees

Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.



Theoretical guarantees

Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.

« An efficient ALG that works in large/continuous action spaces:



Theoretical guarantees

Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.

« An efficient ALG that works in large/continuous action spaces:
* No structural assumptions on the model class.



Theoretical guarantees

Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.

« An efficient ALG that works in large/continuous action spaces:
* No structural assumptions on the model class.
* O(1/h) serves as the effective number of actions.



Theoretical guarantees

Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.

« An efficient ALG that works in large/continuous action spaces:
* No structural assumptions on the model class.
* O(1/h) serves as the effective number of actions.

« Recover minimax guarantees under standard regret:



Theoretical guarantees

Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.

« An efficient ALG that works in large/continuous action spaces:
* No structural assumptions on the model class.
* O(1/h) serves as the effective number of actions.

« Recover minimax guarantees under standard regret:
* Discrete case w/ finite actions: Take h = 1/| | leads to



Theoretical guarantees

Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.

« An efficient ALG that works in large/continuous action spaces:
* No structural assumptions on the model class.
* O(1/h) serves as the effective number of actions.

« Recover minimax guarantees under standard regret:
* Discrete case w/ finite actions: Take h = 1/| | leads to

Regg(T) = O/ || T log| 1)




Theoretical guarantees

Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.

« An efficient ALG that works in large/continuous action spaces:
* No structural assumptions on the model class.
* O(1/h) serves as the effective number of actions.

« Recover minimax guarantees under standard regret:
* Discrete case w/ finite actions: Take h = 1/| | leads to
Reg o(T) = O/ || Tlog| F|)

 Continuous case under Holder (Lipschitz) continuity w/
exponent a: Take h = O(T~V?+D) leads to
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Theorem
Fix h € (0,1]. SmoothlGW achieves 4/T/hlog| % | smooth regret,

with per-round O(1) calls to the regression/sampling oracles.

« An efficient ALG that works in large/continuous action spaces:
* No structural assumptions on the model class.
* O(1/h) serves as the effective number of actions.

« Recover minimax guarantees under standard regret:
* Discrete case w/ finite actions: Take h = 1/| | leads to
Reg o(T) = O/ || Tlog| F|)

 Continuous case under Holder (Lipschitz) continuity w/
exponent a: Take h = O(T~V?+D) leads to

RegCB(T) — (:)(T(a+1)/(2a+1))
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An adaptive algorithm

Corral-SmoothlGW

* Initialize O(log T) base SmoothlGW, each with smoothness

level h, =27°, for b =1,...,0(og(T)).
« Apply the Corral (Agarwal et al. 2017) master ALG to
balance over these base ALGs.

* Inherit the computational efficiency of SmoothlGW up to Olog(T)).
« Recover many known Pareto frontiers under standard regret:
* bandits with unknown number of multiple best arms (ZN "20).
» Holder bandits with unknown smoothness parameter (Hadiji '19).



Empirical evaluations

Replicate the experiment setups from Majzoubi et al. 2020 on 5 OpenML
regression datasets. CATS is the ALG proposed in Majzoubi et al. 2020.

Table 1. Average progressive loss, scaled by 1000, on continuous
action contextual bandit datasets. 95% Cls reported.

CATS Ours (Linear) Ours (RFF)
Cpu  [55,57] 40.6, 40.7] 38.6, 38.7]
Fri  [183,187]  [161,163] 156, 157]

Price [108,110]  [70.2,70.5] 66.1, 66.3]
wis  [172,174]  [138,139]  [136.2,136.6]
Zur  [24,26] 24.3, 24.4] 25.4, 25.5]




Take-aways

Smooth regret is NOT a compromise

Facilitate the design of efficient ALGs



