
Contextual	Bandits	with	Smooth	Regret:	

Efficient	Learning	in	Continuous	Action	Spaces

Yinglun	Zhu 	and	Paul	Mineiro1 2

University	of	Wisconsin-Madison

Microsoft	Research	NYC

1

2

Contextual	bandits

Contextual	bandits

For	each	round	 :t = 1,…, T

Contextual	bandits

For	each	round	 :t = 1,…, T
•Receive	context	 .xt

Contextual	bandits

For	each	round	 :t = 1,…, T
•Receive	context	 .xt

•Select	action	 .at ∈ 𝒜

Contextual	bandits

For	each	round	 :t = 1,…, T
•Receive	context	 .xt

•Select	action	 .at ∈ 𝒜
•Observe	loss	 .ℓt(at) ∈ [0,1]

Contextual	bandits

For	each	round	 :t = 1,…, T
•Receive	context	 .xt

•Select	action	 .at ∈ 𝒜
•Observe	loss	 .ℓt(at) ∈ [0,1]

Contextual	bandits

For	each	round	 :

•Receive	context	 .

•Select	action	 .

•Observe	loss	 .

t = 1,…, T
xt

at ∈ 𝒜
ℓt(at) ∈ [0,1]

Goal:	Minimize	regret	𝖱𝖾𝗀𝖢𝖡(T) := ∑
T

t=1
ℓt(at) − ℓt(π⋆(xt)) .

A	standard	realizability	assumption
We	assume	 	with	a	user-specified	model	class	 .f ⋆ := 𝔼[ℓt ∣ xt] ∈ ℱ ℱ

Existing	guarantees

A	standard	realizability	assumption
We	assume	 	with	a	user-specified	model	class	 .f ⋆ := 𝔼[ℓt ∣ xt] ∈ ℱ ℱ

Existing	guarantees

Rich	function	approximation	for	 :	Neural	nets,	decision	trees,	kernels,	etc.ℱ

Theorem	(Foster	et	al.	2020,	Simchi-Levi	et	al.	2021)
There	exist	efficient	ALGs	that	achieve	regret	 .O(|𝒜 |T log |ℱ |)

A	standard	realizability	assumption
We	assume	 	with	a	user-specified	model	class	 .f ⋆ := 𝔼[ℓt ∣ xt] ∈ ℱ ℱ

Existing	guarantees

Rich	function	approximation	for	 :	Neural	nets,	decision	trees,	kernels,	etc.ℱ

Large-scale	recommendations

Spotify:	82	million	songs Amazon:	353	million	commodities

Large-scale	recommendations

Spotify:	82	million	songs Amazon:	353	million	commodities

Large-scale	recommendations

Search:	dozens	of	billions	of	documents

Spotify:	82	million	songs Amazon:	353	million	commodities

Large-scale	recommendations

Personalized	dynamic	pricing:	Continuous	domainSearch:	dozens	of	billions	of	documents

Theorem	(Agarwal	et	al.	2012)
Any	CB	ALG	must	suffer	worst-case	regret	 .Ω(|𝒜 |T log |ℱ |)

Existing	guarantees

Rich	function	approximation	for	 :	Neural	nets,	decision	trees,	kernels,	etc.ℱ

A	standard	realizability	assumption
We	assume	 	with	a	user-specified	model	class	 .f ⋆ := 𝔼[ℓt ∣ xt] ∈ ℱ ℱ

Theorem	(Agarwal	et	al.	2012)
Any	CB	ALG	must	suffer	worst-case	regret	 .Ω(|𝒜 |T log |ℱ |)

Existing	guarantees

Rich	function	approximation	for	 :	Neural	nets,	decision	trees,	kernels,	etc.ℱ

Question:Can	we	develop	efficient	ALGs	to	handle	large	action	space	problems?	

A	standard	realizability	assumption
We	assume	 	with	a	user-specified	model	class	 .f ⋆ := 𝔼[ℓt ∣ xt] ∈ ℱ ℱ

Adding	additional	structural	assumptions

Adding	additional	structural	assumptions

Linearity
	takes	the	form	 	for

an	unknown	 .
f f(x, a) := ⟨ϕ(x, a), θ⟩

θ ∈ ℝd

Studied	in	AL	’99,	Auer	’02,	CLRS	’11,	APS,	’11,	etc.

Adding	additional	structural	assumptions

Leads	to	 	regretd T

Linearity
	takes	the	form	 	for

an	unknown	 .
f f(x, a) := ⟨ϕ(x, a), θ⟩

θ ∈ ℝd

Studied	in	AL	’99,	Auer	’02,	CLRS	’11,	APS,	’11,	etc.

Adding	additional	structural	assumptions

Leads	to	 	regretd T

Linearity
	takes	the	form	 	for

an	unknown	 .
f f(x, a) := ⟨ϕ(x, a), θ⟩

θ ∈ ℝd

Studied	in	AL	’99,	Auer	’02,	CLRS	’11,	APS,	’11,	etc.

Lipschitzness
	is	a	1-Lipschitz	function.f

Studied	in	Agr	’95,	Kle	’04,	AOS	’07,	Sli,	’14,	etc.

Adding	additional	structural	assumptions

Leads	to	 	regretT2/3

Leads	to	 	regretd T

Linearity
	takes	the	form	 	for

an	unknown	 .
f f(x, a) := ⟨ϕ(x, a), θ⟩

θ ∈ ℝd

Studied	in	AL	’99,	Auer	’02,	CLRS	’11,	APS,	’11,	etc.

Lipschitzness
	is	a	1-Lipschitz	function.f

Studied	in	Agr	’95,	Kle	’04,	AOS	’07,	Sli,	’14,	etc.

Adding	additional	structural	assumptions

Leads	to	 	regretT2/3

Leads	to	 	regretd T

Linearity
	takes	the	form	 	for

an	unknown	 .
f f(x, a) := ⟨ϕ(x, a), θ⟩

θ ∈ ℝd

Studied	in	AL	’99,	Auer	’02,	CLRS	’11,	APS,	’11,	etc.

Lipschitzness
	is	a	1-Lipschitz	function.f

Studied	in	Agr	’95,	Kle	’04,	AOS	’07,	Sli,	’14,	etc.

Led	to	fruitful	theoretical	developments;	but	assumptions	can	be	violated.	

Beyond	structural	assumptions

f ?(xt, a)

A = [0, 1]

Beyond	structural	assumptions

Difficulty:Need	to	handle	general	unstructured	regression	functions.

f ?(xt, a)

A = [0, 1]

Competing	against	weaker	benchmarks

Competing	against	weaker	benchmarks

f ?(xt, a)

A = [0, 1]

a?t

Competing	against	weaker	benchmarks

f ?(xt, a)

A = [0, 1]

a?t

``Needle	in	the	haystack’’

Competing	against	weaker	benchmarks

Let	 	be	a	base	probability	measure.	

Fix	 .	Define	

μ
h ∈ (0,1] 𝒬h := {Q : dQ /dμ ≤ 1/h}

f ?(xt, a)

A = [0, 1]

a?t

``Needle	in	the	haystack’’

Competing	against	weaker	benchmarks

Let	 	be	a	base	probability	measure.	

Fix	 .	Define	

μ
h ∈ (0,1] 𝒬h := {Q : dQ /dμ ≤ 1/h}

Compete	against	smoothed	benchmark	

Smoothh(xt) := inf

Q∈𝒬h

𝔼a∼Q[f ⋆(xt, a)]

f ?(xt, a)

A = [0, 1]

a?t

``Needle	in	the	haystack’’

Competing	against	weaker	benchmarks

Let	 	be	a	base	probability	measure.	

Fix	 .	Define	

μ
h ∈ (0,1] 𝒬h := {Q : dQ /dμ ≤ 1/h}

Compete	against	smoothed	benchmark	

Smoothh(xt) := inf

Q∈𝒬h

𝔼a∼Q[f ⋆(xt, a)]

f ?(xt, a)

A = [0, 1]

Competing	against	weaker	benchmarks

Let	 	be	a	base	probability	measure.	

Fix	 .	Define	

μ
h ∈ (0,1] 𝒬h := {Q : dQ /dμ ≤ 1/h}

Compete	against	smoothed	benchmark	

Smoothh(xt) := inf

Q∈𝒬h

𝔼a∼Q[f ⋆(xt, a)]

Goal:	Minimize	smooth	regret	𝖱𝖾𝗀𝖢𝖡,h(T) := ∑
T

t=1
f ⋆(xt, at) − Smoothh(xt)

f ?(xt, a)

A = [0, 1]

Competing	against	weaker	benchmarks

Let	 	be	a	base	probability	measure.	

Fix	 .	Define	

μ
h ∈ (0,1] 𝒬h := {Q : dQ /dμ ≤ 1/h}

Compete	against	smoothed	benchmark	

Smoothh(xt) := inf

Q∈𝒬h

𝔼a∼Q[f ⋆(xt, a)]
•Stronger	than	previous	proposed	smoothed	benchmarks,	
e.g.,	Chaudhuri	et	al.	2018,	Krishnamurthy	et	al.	2020.	

Goal:	Minimize	smooth	regret	𝖱𝖾𝗀𝖢𝖡,h(T) := ∑
T

t=1
f ⋆(xt, at) − Smoothh(xt)

f ?(xt, a)

A = [0, 1]

Competing	against	weaker	benchmarks

Let	 	be	a	base	probability	measure.	

Fix	 .	Define	

μ
h ∈ (0,1] 𝒬h := {Q : dQ /dμ ≤ 1/h}

Compete	against	smoothed	benchmark	

Smoothh(xt) := inf

Q∈𝒬h

𝔼a∼Q[f ⋆(xt, a)]
•Stronger	than	previous	proposed	smoothed	benchmarks,	
e.g.,	Chaudhuri	et	al.	2018,	Krishnamurthy	et	al.	2020.	

Goal:	Minimize	smooth	regret	𝖱𝖾𝗀𝖢𝖡,h(T) := ∑
T

t=1
f ⋆(xt, at) − Smoothh(xt)

•Recover	minimax	guarantees	under	standard	regret	and	additional	structural	assumptions

f ?(xt, a)

A = [0, 1]

Computational	oracles

Computational	oracles

• 	for	general	 	using	Vovk’s	aggregation	algorithm	(Vovk	’98).

•Standard	oracle	studied	in	contextual	bandits,	e.g.,	FR	’20,	Zhang	’21.

𝖱𝖾𝗀𝖲𝗊(T) = O(log |ℱ |) ℱ

Regression	oracle
Online	regression	oracle	such	that

	
T

∑
t=1

(̂ft(xt, at) − ℓt(at))2 − inf
f∈ℱ

T

∑
t=1

(f(xt, at) − ℓt(at))2 ≤ 𝖱𝖾𝗀𝖲𝗊(T) .

Computational	oracles

Sampling	oracle
Sample	action	 	from	the	base	probability	measure	 .a ∼ μ μ

• 	time	to	generate	a	random	sample	 	using	DDG	Tree	(KY	’76).O(𝖧(μ)) a ∼ μ

• 	for	general	 	using	Vovk’s	aggregation	algorithm	(Vovk	’98).

•Standard	oracle	studied	in	contextual	bandits,	e.g.,	FR	’20,	Zhang	’21.

𝖱𝖾𝗀𝖲𝗊(T) = O(log |ℱ |) ℱ

Regression	oracle
Online	regression	oracle	such	that

	
T

∑
t=1

(̂ft(xt, at) − ℓt(at))2 − inf
f∈ℱ

T

∑
t=1

(f(xt, at) − ℓt(at))2 ≤ 𝖱𝖾𝗀𝖲𝗊(T) .

SquareCB	for	finite	action

SquareCB	(Foster	et	al.	2020)

SquareCB	for	finite	action

SquareCB	(Foster	et	al.	2020)
At	each	round	 :t = 1,…, T

SquareCB	for	finite	action

SquareCB	(Foster	et	al.	2020)
At	each	round	 :t = 1,…, T
•Obtain	 	from	nature	and	 	from	regression	oracle.xt

̂ft

SquareCB	for	finite	action

SquareCB	(Foster	et	al.	2020)
At	each	round	 :t = 1,…, T
•Obtain	 	from	nature	and	 	from	regression	oracle.xt

̂ft

•Compute	greedy	action	 .̂a t := arg min
a∈𝒜

̂ft(xt, a)

SquareCB	for	finite	action

SquareCB	(Foster	et	al.	2020)
At	each	round	 :t = 1,…, T
•Obtain	 	from	nature	and	 	from	regression	oracle.xt

̂ft

•Compute	greedy	action	 .̂a t := arg min
a∈𝒜

̂ft(xt, a)

•Construct	 	prob.	massinverse-gap-weighted

SquareCB	for	finite	action

SquareCB	(Foster	et	al.	2020)
At	each	round	 :t = 1,…, T
•Obtain	 	from	nature	and	 	from	regression	oracle.xt

̂ft

•Compute	greedy	action	 .̂a t := arg min
a∈𝒜

̂ft(xt, a)

•Construct	 	prob.	massinverse-gap-weighted
.pt(a) =

1
|𝒜 | + γ ⋅ (̂ft(xt, a) − ̂ft(xt, ̂a t))

SquareCB	for	finite	action

SquareCB	(Foster	et	al.	2020)
At	each	round	 :t = 1,…, T
•Obtain	 	from	nature	and	 	from	regression	oracle.xt

̂ft

•Compute	greedy	action	 .̂a t := arg min
a∈𝒜

̂ft(xt, a)

•Construct	 	prob.	massinverse-gap-weighted
.pt(a) =

1
|𝒜 | + γ ⋅ (̂ft(xt, a) − ̂ft(xt, ̂a t))

•Sample	action	 .at ∼ pt + (1 − pt(𝒜)) ⋅ 𝕀 ̂a t

SquareCB	for	finite	action

SquareCB	(Foster	et	al.	2020)
At	each	round	 :t = 1,…, T
•Obtain	 	from	nature	and	 	from	regression	oracle.xt

̂ft

•Compute	greedy	action	 .̂a t := arg min
a∈𝒜

̂ft(xt, a)

•Construct	 	prob.	massinverse-gap-weighted
.pt(a) =

1
|𝒜 | + γ ⋅ (̂ft(xt, a) − ̂ft(xt, ̂a t))

•Sample	action	 .at ∼ pt + (1 − pt(𝒜)) ⋅ 𝕀 ̂a t

•Observe	loss	 	and	update	regression	oracle.ℓt(at)

SquareCB	(Foster	et	al.	2020)
At	each	round	 :

•Obtain	 	from	nature	and	 	from	regression	oracle.

•Compute	greedy	action	 .

•Construct	 	

.

•Sample	action	 .

•Observe	loss	 	and	update	regression	oracle.

t = 1,…, T
xt

̂ft
̂a t := arg min

a∈𝒜
̂ft(xt, a)

inverse-gap-weighted RN derivative
dpt

dμ
(a) =

|𝒜 |

|𝒜 | + γ ⋅ (̂ft(xt, a) − ̂ft(xt, ̂a t))
at ∼ pt + (1 − pt(𝒜)) ⋅ 𝕀 ̂a t

ℓt(at)

SquareCB	for	finite	action

SmoothIGW
At	each	round	 :

•Obtain	 	from	nature	and	 	from	regression	oracle.

•Compute	greedy	action	 .

•Construct	 	 	

.

•Sample	action	 .

•Observe	loss	 	and	update	regression	oracle.

t = 1,…, T
xt

̂ft
̂a t := arg min

a∈𝒜
̂ft(xt, a)

inverse-gap-weighted RN derivative
dpt

dμ
(a) =

1/h
1/h+γ ⋅ (̂ft(xt, a) − ̂ft(xt, ̂a t))

at ∼ pt + (1 − pt(𝒜)) ⋅ 𝕀 ̂a t

ℓt(at)

SmoothIGW	for	large	action	spaces

SmoothIGW
At	each	round	 :

•Obtain	 	from	nature	and	 	from	regression	oracle.

•Compute	greedy	action	 .

•Construct	 	 	

.

•Sample	action	 .

•Observe	loss	 	and	update	regression	oracle.

t = 1,…, T
xt

̂ft
̂a t := arg min

a∈𝒜
̂ft(xt, a)

inverse-gap-weighted RN derivative
dpt

dμ
(a) =

1/h
1/h+γ ⋅ (̂ft(xt, a) − ̂ft(xt, ̂a t))

at ∼ pt + (1 − pt(𝒜)) ⋅ 𝕀 ̂a t

ℓt(at)

SmoothIGW	for	large	action	spaces

Efficient	rejection	sampling
•Sample	 	from	base	measure	 	w/	sampling	oracle.

•Sample	 	from	a	Bernoulli	dist.	with	mean	 .

•Play	 	if	 ;	play	 	otherwise.

ǎt ∼ μ μ
Z dpt /dμ(ǎt)

ǎt Z = 1 ̂a t

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

•An	efficient	ALG	that	works	in	large/continuous	action	spaces:

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

•An	efficient	ALG	that	works	in	large/continuous	action	spaces:
•No	structural	assumptions	on	the	model	class.

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

•An	efficient	ALG	that	works	in	large/continuous	action	spaces:
•No	structural	assumptions	on	the	model	class.
• 	serves	as	the	effective	number	of	actions.O(1/h)

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

•An	efficient	ALG	that	works	in	large/continuous	action	spaces:
•No	structural	assumptions	on	the	model	class.
• 	serves	as	the	effective	number	of	actions.O(1/h)

•Recover	minimax	guarantees	under	standard	regret:

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

•An	efficient	ALG	that	works	in	large/continuous	action	spaces:
•No	structural	assumptions	on	the	model	class.
• 	serves	as	the	effective	number	of	actions.O(1/h)

•Recover	minimax	guarantees	under	standard	regret:
•Discrete	case	w/	finite	actions:Take	 	leads	toh = 1/ |𝒜 |

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

•An	efficient	ALG	that	works	in	large/continuous	action	spaces:
•No	structural	assumptions	on	the	model	class.
• 	serves	as	the	effective	number	of	actions.O(1/h)

•Recover	minimax	guarantees	under	standard	regret:
•Discrete	case	w/	finite	actions:Take	 	leads	toh = 1/ |𝒜 |

𝖱𝖾𝗀𝖢𝖡(T) = Θ(|𝒜 |T log |ℱ |)

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

•An	efficient	ALG	that	works	in	large/continuous	action	spaces:
•No	structural	assumptions	on	the	model	class.
• 	serves	as	the	effective	number	of	actions.O(1/h)

•Recover	minimax	guarantees	under	standard	regret:
•Discrete	case	w/	finite	actions:Take	 	leads	toh = 1/ |𝒜 |

𝖱𝖾𝗀𝖢𝖡(T) = Θ(|𝒜 |T log |ℱ |)
•Continuous	case	under	Hölder	(Lipschitz)	continuity	w/
exponent	 :	Take	 	leads	toα h = Õ(T−1/(2α+1))

Theorem
Fix	 .	SmoothIGW	achieves	 	smooth	regret,	

with	per-round	 	calls	to	the	regression/sampling	oracles.

h ∈ (0,1] T/h log |ℱ |
O(1)

Theoretical	guarantees

•An	efficient	ALG	that	works	in	large/continuous	action	spaces:
•No	structural	assumptions	on	the	model	class.
• 	serves	as	the	effective	number	of	actions.O(1/h)

•Recover	minimax	guarantees	under	standard	regret:
•Discrete	case	w/	finite	actions:Take	 	leads	toh = 1/ |𝒜 |

𝖱𝖾𝗀𝖢𝖡(T) = Θ(|𝒜 |T log |ℱ |)
•Continuous	case	under	Hölder	(Lipschitz)	continuity	w/
exponent	 :	Take	 	leads	toα h = Õ(T−1/(2α+1))

𝖱𝖾𝗀𝖢𝖡(T) = Θ̃(T (α+1)/(2α+1))

An	adaptive	algorithm

An	adaptive	algorithm

Corral-SmoothIGW
•Initialize	 	base	SmoothIGW,	each	with	smoothness

			level	 ,	for	 .

•Apply	the	Corral	(Agarwal	et	al.	2017)	master	ALG	to	

			balance	over	these	base	ALGs.

O(log T)
hb = 2−b b = 1,…, O(log(T))

An	adaptive	algorithm

Corral-SmoothIGW
•Initialize	 	base	SmoothIGW,	each	with	smoothness

			level	 ,	for	 .

•Apply	the	Corral	(Agarwal	et	al.	2017)	master	ALG	to	

			balance	over	these	base	ALGs.

O(log T)
hb = 2−b b = 1,…, O(log(T))

•Inherit	the	computational	efficiency	of	SmoothIGW	up	to	 .

•Recover	many	known	Pareto	frontiers	under	standard	regret:

•bandits	with	unknown	number	of	multiple	best	arms	(ZN	’20).

•Hölder	bandits	with	unknown	smoothness	parameter	(Hadiji	’19).

O(log(T))

Empirical	evaluations

Replicate	the	experiment	setups	from	Majzoubi	et	al.	2020	on	5	OpenML	

regression	datasets.	CATS	is	the	ALG	proposed	in	Majzoubi	et	al.	2020.

Smooth	regret	is	NOT	a	compromise

Facilitate	the	design	of	efficient	ALGs

Take-aways

