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Background
• Goal of  Domain Generalization (DG)

• learn classifiers that generalize on the unseen target domain

• Motivation
• empirical risk minimization is error-prone to domain shift
• domain shift: testing distribution  𝒯 ≠ training distribution 𝒮

• E.g,  various weather conditions for training and testing in autonomous driving tasks

Training distribution (source domain) 𝒯 Testing distribution (target domain) 𝒮

Generalize ?
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Limitation of  Three-term-trade-off

Assuming this term to be smallOptimizing these two terms

Target risk of 
a classifier h

Source risk of 
a classifier h

The divergence between the target 
distribution 𝒯 and the source distribution 𝒮

The risk of a joint ideal classifier 
for the target 𝒯and source 𝒮

optimized approximately by 
∑!,#𝒟 𝒮!||𝒮#

• A pervasive theme of  target risk decomposition

ℛ𝒯 ℎ ≤ ℛ𝒮 ℎ + 𝒟 𝒯||𝒮 + 𝜆(ℎ(𝒯,𝒮)∗ )

• Memorization on the seen training domain
• only seen source-discriminative features are memorized,
• target-discriminative features could be ignored



Limitation of  Three-term-trade-off

Assuming this term to be smallOptimizing these two terms

Target risk of 
a classifier h

Source risk of 
a classifier h

The divergence between the target 
distribution 𝒯 and the source distribution 𝒮

The risk of a joint ideal classifier 
for the target 𝒯and source 𝒮

Challenge the accessibility of an ideal 
classifier in the  effective support of 

hypothesis space during training

optimized approximately by 
∑!,#𝒟 𝒮!||𝒮#

• A pervasive theme of  target risk decomposition

ℛ𝒯 ℎ ≤ ℛ𝒮 ℎ + 𝒟 𝒯||𝒮 + 𝜆(ℎ(𝒯,𝒮)∗ )

• Memorization on the seen training domain
• only seen source-discriminative features are memorized,
• target-discriminative features could be ignored

Implying a bad balance of  the three-term-trade-off



Our solution
• bridging ensemble and DG for easier target risk control
• Ensemble: Enlarging the effective support of the hypothesis space without the 

cost of introducing more parameters

• contribution summary
• Propose a novel pruned Jensen-Shannon divergence (PJS) loss, which connects 

the generalization risk and a pruned Jensen-Shannon divergence
• Propose upper bounds on the target risk of classifier ensembles
• Propose a practical diversified neural averaging (DNA) algorithm optimizing the 

PAC-Bayesian bound 
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Our solution
• contribution summary
• Propose a novel pruned Jensen-Shannon divergence (PJS) loss, which connects 

the generalization risk and a pruned Jensen-Shannon divergence
• Propose upper bounds on the (target) risk of classifier ensembles
• Propose a practical diversified neural averaging (DNA) algorithm optimizing the 

PAC-Bayesian bound 
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Experimental evaluation
• With similar computational cost, the proposed 

DNA achieves competitive performance

• With lower computational cost, the proposed 
DNA achieves competitive performance 
compared with a common ensemble strategy

• The training process of the DNA (b) is more 
stable compared to  the other variants, indicating 
the ease of model selection
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Experimental evaluation
• With similar computational cost, the proposed 

DNA achieves competitive performance

• With lower computational cost, the proposed 
DNA achieves competitive performance 
compared with a common ensemble strategy

• The training process of the DNA (Fig. b) is more 
stable compared to the other variants, indicating 
the ease of model selection
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