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Neural ODE

Consider autonomous systems of first-order ordinary differential equations

SN =F0(0), ¥(0)=x 1)

where y(t) € RP, f : RP — RP is smooth and x is the initial value. For
fixed t, y(t) can be regarded as a function of its initial value x. We
denote

oe(x) = y(t) = x +/0 f(y(7))d,

which is known as the time-t flow map of dynamical system (1). In
general, we chose a numerical integrator ®4 that approaches ¢, and
compose it to obtain the numerical solution. In order to emphasize
specific differential equation, we will add the subscript f and denote ¢;
as ¢t7f and ¢4, as ¢h,f .
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Neural ODE

In this work, we consider the empirical risk optimization problem

1 N
= N Z /(¢T,f9 (Xn)a Zn)?
n=1

where ¢7 ¢, is a Neural ODE model with a trainable neural network f;

Dividing T in S equally-spaced intervals, the ¢ 7, can be approximated
by S compositions of a predetermined one-step numerical integrator ®,

OT.6 RPpyp 0 0Py p(x) = (¢h,f9)5 (x),
—_—

S compositions

where h = T /S is the discrete step. Therefore, the practical input of loss
function is given by the predetermined ODE solver, i.e.,

N
Z ( by,) x,,),z,,) )
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Numerical integration in Neural ODE
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Figure: From Ott et al.
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Inverse Modified Differential Equations (IMDE)

We aim to find a perturbed differential equation (named IMDE)

< 9(0) =(7(0) = 67) + BA() + FHG) +-

such that ®p ¢, (x) = ¢p ¢(x) formally.
1. Expand ¢p ¢(x) into a Taylor series around h =0,

h3

2
&n,r(x) :x+hf(x)+h—f’f( )+ 5 —(

5 f(F, F)(x) + f'f'f(x)) +

2. Expand numerical solution as
®p.r(x) = x + hdy 5, (x) + hda g, (x) 4 - - -

3. Compare the coefficients of equal powers of h, obtain f, in a recursive
manner.



Main Results

The trained Neural ODE model is a close approximation of the IMDE,
i.e., the difference between the learned Neural ODE model and the
truncation of the IMDE is bounded by the sum of the learning loss and a
discrepancy which can be made sub exponentially small,
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Main Results

The difference between the learned Neural ODE model and the true
hidden system is bounded by the sum of the discretization error Ch” and
the learning loss, where h is the discrete step and p is the order of the
numerical integrator, i.e.,

1fa0) = (I < comh? + =< L.
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Main Results

A Hamiltonian system is formulated as
d _1 0 I
sr=rwno. a=(0 g).

where | is D/2-by-D /2 identity matrix.

Neural ODE using non-symplectic numerical integration fail to learn
conservation laws theoretically, since the IMDE of non-symplectic
integrator is not a Hamiltonian system.
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Thanks for your attention!
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