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Neural ODE

Consider autonomous systems of first-order ordinary differential equations

d

dt
y(t) = f (y(t)), y(0) = x , (1)

where y(t) ∈ RD , f : RD → RD is smooth and x is the initial value. For
fixed t, y(t) can be regarded as a function of its initial value x . We
denote

ϕt(x) := y(t) = x +

∫ t

0

f (y(τ))dτ,

which is known as the time-t flow map of dynamical system (1). In
general, we chose a numerical integrator Φh that approaches ϕh and
compose it to obtain the numerical solution. In order to emphasize
specific differential equation, we will add the subscript f and denote ϕt

as ϕt,f and Φh as Φh,f .
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Neural ODE
In this work, we consider the empirical risk optimization problem

L =
1

N

N∑
n=1

l(ϕT ,fθ (xn), zn),

where ϕT ,fθ is a Neural ODE model with a trainable neural network fθ

Dividing T in S equally-spaced intervals, the ϕT ,fθ can be approximated
by S compositions of a predetermined one-step numerical integrator Φh,

ϕT ,fθ ≈Φh,fθ ◦ · · · ◦ Φh,fθ︸ ︷︷ ︸
S compositions

(x) = (Φh,fθ )
S (x),

where h = T/S is the discrete step. Therefore, the practical input of loss
function is given by the predetermined ODE solver, i.e.,

L =
1

N

N∑
n=1

l
(
(Φh,fθ )

S (xn), zn
)
.
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Numerical integration in Neural ODE

Figure: From Ott et al.
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Inverse Modified Differential Equations (IMDE)

We aim to find a perturbed differential equation (named IMDE)

d

dt
ỹ(t) =fh(ỹ(t)) = f0(ỹ) + hf1(ỹ) + h2f2(ỹ) + · · · ,

such that Φh,fh(x) = ϕh,f (x) formally.
1. Expand ϕh,f (x) into a Taylor series around h = 0,

ϕh,f (x) =x + hf (x) +
h2

2
f ′f (x) +

h3

6
(f ′′(f , f )(x) + f ′f ′f (x)) + · · · .

2. Expand numerical solution as

Φh,fh(x) = x + hd1,fh(x) + h2d2,fh(x) + · · · .

3. Compare the coefficients of equal powers of h, obtain fk in a recursive
manner.
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Main Results

The trained Neural ODE model is a close approximation of the IMDE,
i.e., the difference between the learned Neural ODE model and the
truncation of the IMDE is bounded by the sum of the learning loss and a
discrepancy which can be made sub exponentially small,∥∥fθ(x)− f Kh (x)

∥∥ ≤ c1me−γ/h1/q +
e

e − 1
L,
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Main Results

The difference between the learned Neural ODE model and the true
hidden system is bounded by the sum of the discretization error Chp and
the learning loss, where h is the discrete step and p is the order of the
numerical integrator, i.e.,

∥fθ(x)− f (x)∥ ≤ c2mhp +
e

e − 1
L.
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Main Results

A Hamiltonian system is formulated as

d

dt
y = J−1∇H(y), J =

(
0 I
−I 0

)
,

where I is D/2-by-D/2 identity matrix.

Neural ODE using non-symplectic numerical integration fail to learn
conservation laws theoretically, since the IMDE of non-symplectic
integrator is not a Hamiltonian system.
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Thanks for your attention!
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