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Federated Stochastic Compositional Optimization Problem

Federated Stochastic Compositional Optimization Problem

min
x∈Rd

1

K

K∑
k=1

E
ζ∼D(k)

f

[
f (k)

(
E
ξ∼D(k)

g
[g (k)(x ; ξ)]; ζ

)]
. (1)

f (k)(y) , E
ζ∼D(k)

f

[f (k)(y ; ζ)] ∈ R is the outer-level function on the k-th device

g (k)(x) , E
ξ∼D(k)

g
[g (k)(x ; ξ)] ∈ Rd′

is the inner-level function on the k-th device

Examples:

Policy evaluation
Sparse additive models
Model-agnostic meta-learning
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Model-agnostic meta-learning

Model-agnostic meta-learning

min
x∈Rd

1

K

K∑
k=1

F (k)(x) ,
1

K

K∑
k=1

f (k)(g (k)(x)) ,

where g (k)(x) = E
ξ(k)∼D(k)

i,train

[
x − λ∇L(k)i

(
x ; ξ(k)

)]
,

f (k)(x) = E
i∼P(k)

task,ζ
(k)∼D(k)

i,test

[
L(k)i

(
y ; ζ(k)

)]
.

(2)

P(k)
task is the task distribution

λ is the learning rate

D(k)
i,train is the training set and D(k)

i,test is the testing set of the i-th task.
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Challenges

Challenges: Stochastic gradient is a biased estimation for the full gradient

Eξ,ζ [∇g(x ; ξ)T∇g f (g(x ; ξ); ζ)] 6= ∇g(x)T∇g f (g(x)) . (3)

Existing methods
Federated learning methods:

Local-BSGD [Huang et al., 2021]: O(1/ε8) sample complexity
Local-MOML [Wang et al., 2021]: O(1/ε5) sample complexity

Single-machine methods:

NASA [Ghadimi et al., 2020]: O(1/ε4) sample complexity

Q: Can we have a better sample complexity under the federated learning setting?
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Local-SCGDM

Algorithm 1 Local-SCGDM

1: for t = 0, · · · ,T − 1 do
2: if t == 0 then
3: u

(k)
1 = g (k)(x

(k)
0 ; ξ

(k)
0 ), z

(k)
0 = ∇g (k)(x

(k)
0 ; ξ

(k)
0 )T∇g f

(k)(u
(k)
1 ; ζ

(k)
0 ), m

(k)
1 = z

(k)
0 ,

4: else
5: u

(k)
t+1 = (1− γη)u

(k)
t + γηg (k)(x

(k)
t ; ξ

(k)
t ),

6: z
(k)
t = ∇g (k)(x

(k)
t ; ξ

(k)
t )T∇g f

(k)(u
(k)
t+1; ζ

(k)
t ), //stochastic compositional gradient

7: m
(k)
t+1 = (1− αη)m

(k)
t + αηz

(k)
t , // momentum

8: end if
9: x

(k)
t+1 = x

(k)
t − βηm(k)

t+1,
10: if mod(t + 1, p) == 0 then

11: u
(k)
t+1 = 1

K

∑K
k ′=1 u

(k ′)
t+1 , m

(k)
t+1 = 1

K

∑K
k ′=1m

(k ′)
t+1 , x

(k)
t+1 = 1

K

∑K
k ′=1 x

(k ′)
t+1 ,

12: end if
13: end for
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Convergence Rate of Local-SCGDM

Theorem

Suppose Assumption 3.1-3.3 hold, by setting η = T−1/2, p = T 1/4, Algorithm 1 has the
following convergence rate:
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√
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(4)
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Convergence Rate of Local-SCGDM

To make 1
T

∑T−1
t=0 ‖∇F (x̄t)‖ ≤ ε, T should be as large as O(1/ε4).

Methods Iteration Batch size Sample Period Commuication

Local-BSGD O( 1
ε4

) O( 1
ε4

) O( 1
ε8

) O(1) O( 1
ε4

)
Local-MOML O( 1

ε5
) O(1) O( 1

ε5
) O( 1

ε2
) O( 1

ε3
)

Ours O( 1
ε4

) O(1) O( 1
ε4

) O(1ε ) O( 1
ε3

)
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Sinewave Regression

Figure: Train (Left) and Validation(Right) loss for our method and baselines.
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