Domain Adaptation for Time Series Forecasting via Attention Sharing Xiaoyong Jin, Youngsuk Park, Danielle Robinson, Hao Wang, Bernie Wang ICML 2022 #### Problem - Forecasting with data scarcity - Limited data from a target domain - Abundant data from a source domain - Domain adaptation: - Learn a model mainly on the data-rich source domain - Transfer certain knowledge to the datascarce target domain by adaptation ## Existing Domain Adaptation - Learn domain-invariant features - Distinctions between domains do not affect predictions from features - Methods: - Metric-based regularization - Adversarial training #### DA in Forecasting - Domain-specific features are necessary for domain-dependent forecasts - Domain-invariant features to connect both domains - Query-key matching in Attention - Domain-specific features are retained to make domain-dependent forecasts - Value combination in Attention # Domain Adaptation Forecaster ### Attention Sharing Strategy #### How it works #### **Key observations** - Attention keys are aligned in DAF but not in single-domain Attention Forecaster (AttF) - More reasonable attention weights in DAF than in AttF - Better forecasts from DAF - Attention values stay distinct across domains #### Results | $\mathcal{D}_{\mathcal{T}}$ | $\mathcal{D}_{\mathcal{S}}$ | au | DAR | AttF | SASA | DATSING | RDA-DANN | RDA-ADDA | RDA-MMD | DAF | |-----------------------------|-----------------------------|--------|-------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------| | traf | elec
wiki | | 0.205±0.015 | 0.182 ± 0.007 | 0.177±0.004 | $0.184{\pm}0.004$ | $0.181 {\pm} 0.009$ | 0.174 ± 0.005 | $0.186{\pm}0.004$ | 0.169±0.002 | | uai | | 24 | | | 0.197 ± 0.001 | 0.189 ± 0.005 | 0.180 ± 0.004 | 0.181 ± 0.003 | 0.179 ± 0.004 | 0.176 ± 0.004 | | elec | traf | traf | 0.141±0.023 | 0.137±0.005 | 0.164 ± 0.001 | 0.137 ± 0.003 | 0.133 ± 0.005 | 0.134 ± 0.002 | 0.140 ± 0.006 | 0.125 ± 0.008 | | elec | sales | | | | 0.160 ± 0.001 | 0.149 ± 0.009 | $0.135 {\pm} 0.007$ | 0.142 ± 0.003 | 0.144 ± 0.003 | 0.123 ± 0.005 | | wiki | traf | | 0.055±0.010 | 0.050±0.003 | 0.053±0.001 | 0.049 ± 0.002 | 0.047 ± 0.005 | 0.045 ± 0.003 | $0.045{\pm}0.003$ | 0.042±0.004 | | | sales | | | | 0.053 ± 0.001 | 0.052 ± 0.004 | 0.053 ± 0.002 | 0.049 ± 0.003 | 0.052 ± 0.004 | 0.049 ± 0.003 | | sales | elec | elec ' | 0.305±0.005 | 0.308±0.002 | 0.451 ± 0.001 | 0.301 ± 0.008 | 0.297 ± 0.004 | 0.281 ± 0.001 | 0.291 ± 0.004 | 0.277 ± 0.005 | | sales | wiki | | | | 0.301 ± 0.001 | 0.305 ± 0.008 | 0.287 ± 0.009 | 0.287 ± 0.002 | 0.289 ± 0.003 | 0.280±0.007 | #### Takeaways - Knowledge of forecasting can be transferred from data-rich domains to data-scarce domains - 2. Attention mechanism is suitable for domain adaptation, where - 1. queries/keys can be induced to be invariant across domains; - 2. values can stay distinct to make domain-dependent forecasts