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Kernel Methods

• Widely used in machine learning, statistics, and control


• Real-world applications:


• Hyperparameter Tuning of Deep Neural Networks: e.g. Google Vizier


• Reinforcement Learning: Bayesian Optimization [Srinivas et. al’09]


• Neural Tangent Kernel: evolution of neural nets during training can be 
described by kernel methods [Jacot et. al’18]
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• Learn a nonlinear function  from noisy samples 


 for 


•  are i.i.d. Gaussian noise


• Kernel Ridge Regression is a simple and yet powerful solution


• Given a kernel function 
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f : ℝd → ℝ

γi = f(xi) + εi i = 1,2,…n

εi

k : ℝd × ℝd → ℝ

f̃(x) =
n

∑
i=1

αi k(x, xi)

α = arg min
β∈ℝn

K β − γ
2

2
+ λ β⊤K β

Kernel Methods
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Scalability of Kernel Methods
• Kernel methods are expensive


• Computing all kernel entries takes  time


• Even writing it down takes  time and memory


• A single iteration of a linear system solver takes  time


• For  storing  requires  !

Ω (n 𝚗𝚗𝚣(X) + n2)
Ω (n2)

Ω (n2)
n = 100,000 K 80GB
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Classic Solution: Dimensionality Reduction

 


• Storing  uses  space and computing  takes  time


• Orthogonalisation, eigen-decomposition, and pseudo-inversion of  all 
take just  time

Z O(ns) Z⊤Z α O(ns)

Z⊤Z
O (ns2)

K

n × n

Z⊤

Z
low-rank 


approximation

n

s
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Efficient Low-Rank Approximation?

• Direct eigen-decomposition, or even approximation via Krylov subspace 
methods are out of question since they at least require fully forming  !


• Many faster methods proposed: Nyström Method [WS’01, MM’17], Random 
Features [RR’08, AKMMVZ’17, ZHASKS’21], Oblivious Sketching [ANW’14, 
AKKPVWZ’20, SWYZ’21], Leverage Score Sampling [WZ’20]


•  Our approach: kernel low-rank approximation based on leverage score 
sampling

K
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Kernel Feature Map

• Any kernel  defines a lifting  such that





• The kernel computes the inner product between the lifted data points


• 


•  is a  feature matrix whose  column is 

k : ℝd × ℝd → ℝ ϕ : ℝd → ℝD

k(x, y) = ϕ(x)⊤ϕ(y)

K = Φ⊤Φ

Φ D × n ith ϕ(xi)
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Polynomial Kernel
• One of our main focuses is the Polynomial Kernel 

 

• Lifting function: 





• Goal: design a sampler  such that  is efficiently 
computable without needing to form  explicitly

k(x, y) = (x⊤y)q

ϕ(x) = x⊗q ∈ ℝdq

Φ = X⊗q ∈ ℝdq×n

Π ∈ ℝs×dq Π X⊗q

X⊗q
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Approximation Guarantee
• Subspace Embedding: for every  and any dataset matrix 

, if  is the the degree-  Polynomial feature matrix, w.h.p.





• Want:


• Number of samples at most statistical dimension 


• Total time to find  and compute , at most 

ε, λ > 0
X ∈ ℝd×n Φ = X⊗q q

Φ⊤Φ + λI
1 + ε

⪯ Φ⊤Π⊤Π Φ + λI ⪯
Φ⊤Φ + λI

1 − ε

sλ = 𝚝𝚛 (K(K + λI)−1)
Π Π Φ 𝒪(𝚗𝚗𝚣(X))
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Prior Work
• Ahle, Kapralov, Knudsen, Pagh, Velingker, Woodruff, Z’20: Oblivious Subspace 

Embedding (OSE) of the Polynomial kernel


• Target dimension 


• Time to apply the sketch  is 


• Song, Woodruff, Yu, Zhang’21: OSE for the degree-  Polynomial kernel


• Target dimension 


• Time to apply the sketch  is 

s ≈ ε−2q4sλ

Π X⊗q ε−2q5 ⋅ 𝚗𝚗𝚣(X)

q

s ≈ n/ε2

Π X⊗q ε−2q2n2 + nd
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• suboptimal target dimension 

• multiplicative  factor in runtimeq5/ε2
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• suboptimal target dimension 

• quadratic dependence on  in runtimen



Prior Work

• Woodruff, Z’20: Leverage Score Sampling with OSE guarantee for the 
degree-  Polynomial kernel


• Target dimension 


• Sampling time  is 


• This method showed that  factors can be decoupled from the 
leading term of the runtime

q

s ≈ sλ/ε2

Π X⊗q q2.5 ⋅ 𝚗𝚗𝚣(X)

𝚙𝚘𝚕𝚢(1/ε)
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• multiplicative  factor in runtimeq2.5



Main Result

• Theorem 1. For every , if  is the statistical dimension of the 
degree-  polynomial kernel on this dataset, then there exists an algorithm 
that outputs a sampling matrix   with  samples using 

 runtime such that w.h.p.


X ∈ ℝd×n sλ
q

Π ∈ ℝs×dq s ≈ sλ/ε2

𝒪 (min{q ⋅ 𝚗𝚗𝚣(X), nd})
X⊗q⊤X⊗q + λI

1 + ε
⪯ X⊗q⊤Π⊤Π X⊗q + λI ⪯

X⊗q⊤X⊗q + λI
1 − ε
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Implications for Other Kernels

• For datasets with  radius :


• OSE for the Gaussian kernel as well as any dot-product kernels with 
rapidly convergent Taylor expansion  in time 

ℓ2 r > 0

𝒪 (min {r2 ⋅ 𝚗𝚗𝚣(X), nd})

23


