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Kernel Methods

 Widely used in machine learning, statistics, and control

 Real-world applications:
 Hyperparameter Tuning of Deep Neural Networks: e.g. Google Vizier
 Reinforcement Learning: Bayesian Optimization [Srinivas et. al’09]

* Neural Tangent Kernel: evolution of neural nets during training can be
described by kernel methods [Jacot et. al’18]



Kernel Methods

- Learn a nonlinear function f : RY — R from noisy samples

v, =f(x)+¢gfori=12,...n

» ¢; arei.i.d. Gaussian noise

 Kernel Ridge Regression is a simple and yet powerful solution

. Given a kernel function k : R¢x R4 - R

f(x) = Z a; k(x, x;)
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Scalability of Kernel Methods
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 Kernel methods are expensive _ ntraining points
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Scalability of Kernel Methods

nXxn

Kernel methods are expensive n training points

X K

Ki, i= k(x;, x])

d features

« Computing all kernel entries takes €2 (n nnz(X) + nz) time
« Even writing it down takes €2 (nz) time and memory

A single iteration of a linear system solver takes €2 (nz) time

e Forn = 100,000 storing K requires 80GB |
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Classic Solution: Dimensionality Reduction



Classic Solution: Dimensionality Reduction

nxn n

low-rank
approximation

» Storing Z uses O(ns) space and computing Z ' Z a takes O(ns) time

 Orthogonalisation, eigen-decomposition, and pseudo-inversion of 7Z'Z all
take just O (nsz) time



Efficient Low-Rank Approximation?

* Direct eigen-decomposition, or even approximation via Krylov subspace
methods are out of question since they at least require fully forming K'!
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Efficient Low-Rank Approximation?

* Direct eigen-decomposition, or even approximation via Krylov subspace
methods are out of question since they at least require fully forming K'!

 Many faster methods proposed: Nystrom Method [WS’01, MM’17], Random
Features [RR’08, AKMMVZ’17, ZHASKS’21], Oblivious Sketching [ANW’14,
AKKPVWZ’20, SWYZ’21], Leverage Score Sampling [WzZ’20]

« Our approach: kernel low-rank approximation based on leverage score
sampling
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. Any kernel k : R x |

d

— R defines a lifting ¢ : |

k(x,y) = dp(x) ' P(y)

Kernel Feature Map

D such that

 The kernel computes the inner product between the lifted data points
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Any kernel k : R X [

d

Kernel Feature Map

— RP such that

— R defines a lifting ¢ : |

k(x,y) = dp(x) ' P(y)

The kernel computes the inner product between the lifted data points

® is a feature matrix with n columns whose i’

K=®'®

" column is P(x;)
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Polynomial Kernel

 One of our main focuses is the Polynomial Kernel

k(x,y) = (xTy)”

. Lifting function: ¢(x) = x®4 € R¥
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Polynomial Kernel

 One of our main focuses is the Polynomial Kernel

k(x,y) = (xTy)”

. Lifting function: ¢(x) = x®4 € R¥

O = X® € R4

e (Goal: design a sampler 1] € | Xd% such that TT X®4 is efficiently
computable without needing to form X®7 explicitly
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Approximation Guarantee

« Subspace Embedding: for every €, 4 > 0 and any dataset matrix
X € R if ® = X®7 is the the degree-g Polynomial feature matrix, w.h.p.

'O+ O D+ Al
—— <O P+ MU < ——
1l +¢ l —¢

e Want:

« Number of samples at most statistical dimension s, = tr (K(K + /11)_1)

 Total time to find 11 and compute 11 ®, at most O(nnz(X))
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Prior Work

* Ahle, Kapralov, Knudsen, Pagh, Velingker, Woodruff, Z’20: Oblivious Subspace
Embedding (OSE) of the Polynomial kernel

 Jarget dimension s X 8‘2q4s/1

. Time to apply the sketch IT X®7 is e_zqs - nnz(X)
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Prior Work

* Ahle, Kapralov, Knudsen, Pagh, Velingker, Woodruff, Z’20: Oblivious Subspace
Embedding (OSE) of the Polynomial kernel

 Target dimension s ~ 8‘2q4s/1
. Time to apply the sketch IT X®7 is 8‘2q5 - nnz(X)

q )

. suboptimal target dimension

. multiplicative g°/¢? factor in runtime
_ Y,
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Prior Work

» Song, Woodruff, Yu, Zhang’21: OSE for the degree-g Polynomial kernel
. Target dimension s ~ n/e?

« Time to apply the sketch 11 X% s f:_zqrzn2 + nd
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Prior Work

. suboptimal target dimension

 quadratic dependence on 7 Iin runtime

\— _J

» Song, Woodruff, Yu, Zhang’21: OSE for the degree-g Polynomial kernel
. Target dimension s ~ n/e”

« Time to apply the sketch 11 X% s 8_2q2n2 + nd
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Prior Work

» Woodruff, Z’20: Leverage Score Sampling with OSE guarantee for the
degree-g Polynomial kernel

. Target dimension s = s,/&*
. Sampling time IT X®?is g*~ - nnz(X)

» This method showed that poly(1/¢) factors can be decoupled from the
leading term of the runtime
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Prior Work

» Woodruff, Z’20: Leverage Score Sampling with OSE guarantee for the
degree-g Polynomial kernel g A

 multiplicative q2°5 factor in runtime

. Target dimension s = s,/&*

\_ v

. Sampling time IT X®?is g*~ - nnz(X)

» This method showed that poly(1/¢) factors can be decoupled from the
leading term of the runtime

21



Main Result

adxn

« Theorem 1. For every X € | , if 5, is the statistical dimension of the

degree-g polynomial kernel on this dataset, then there exists an algorithm
that outputs a sampling matrix IT € R**?¢" with s ~ S/I/g2 samples using

O (min{q - nnz(X), nd}) runtime such that w.h.p.

X®4Tx®q 4 A1 X®1Tx®4 4 )1
T < X®ITIT'IT X®9 + 1] < 1—+
E — &
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Implications for Other Kernels

» For datasets with ¢, radius r > 0:

 OSE for the Gaussian kernel as well as any dot-product kernels with

rapidly convergent Taylor expansion in time © (min {r2 - nnz(X), nd})
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