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Motivation

State-of-the-art machine learning models are excellent at in-distribution generalization.

However, they struggle to generalize to out-of-distribution examples.

We study robust generalization in the task of learning regular languages, comparing
compositional models with end-to-end models theoretically and empirically.
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Problem Setup

Regular language L (eg: Bit strings Different VVeights
with odd #0’s) and it’s complement
L¢ (eg: Bit strings with even #07s). 1: poo T fap..
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L¢(—): we use the same Markov =~ - T P

Chain for train and test example
generation.

We construct Markov Chains to
generate sequences in L (+) and
L¢(—) respectively.
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L (+): we perturb the weights of
the train Markov Chain to generate
the test examples.
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Failure of End-to-End Modeling
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Performance degradation of an RNN model (end-to-end)

We use Auxiliary Supervision to mitigate this problem.
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Compositional Modeling

Standard Classification of the input sequence

End-to-end Models which are H H
trained to predict whether a

sequence lies in the language or not.
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.ie . Classification with auxiliary state sequence supervision
Compositional Models which are Y q P

trained using auxiliary supervision: ( T-v-'-

state sequences corresponding to
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Theoretical Analysis

Setup: Train a model f on examples from distribution P, test f on examples drawn from distribution Q

Generalization Bound A A
under Covariate Shift LQ(f) < LP(f) ) TV(P(I), Q(CE)) ]
Loss of f on Q Loss offf on P Total Variation Distance between P and Q

TV(P(2), Q(2)) = X pex [P(2) — Q)]

End-to-End [LQ(f) < Lp(f) ] 2T|S|T+1€ J

Model T: Length of the sequence.

\ |S|: Number of States
€ : quantifies the shift in the

exponential

emission distributions of P and Q
Compositional A ¥ A 2
Model [LQ(f) = dipl]) £ 20 ]
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Theoretical Analysis

The worst-case bounds obtained in the last slide can be overly conservative.
Given Markov Chains P and Q, we can estimate the TV distance as follows:
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Accuracy (%)

Theoretical vs Empirical Generalization
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Empirical test accuracies for end-to-end
(red solid) and compositional (black
solid) models, and the theoretical
estimates of the test accuracies for end-

to-end (red dashed) and compositional
(black dashed) models.

Takeaways:

1. The compositional model
outperforms the end-to-end model.

2. The end-to-end model empirically

outperforms the corresponding
theoretical estimate. 8



Summary

Studied Robust Generalization for Learning Regular Languages comparing
compositional models with end-to-end models theoretically and empirically.

State Sequence Auxiliary Supervision improves generalization to out-of-
distribution examples, outperforming the end-to-end model.

The end-to-end model empirically outperforms the theoretically estimated
accuracy, suggesting it can robustly generalize to some degree.
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Thank You!

Questions ?

| Poster # 426 (Hall E) |




