
How to Steer Your Adversary: Targeted and
Efficient Model Stealing Defenses with

Gradient Redirection

Mantas Mazeika, Bo Li, David Forsyth

Model Stealing Attacks

● Adversaries can query public machine learning APIs and train copycat models
● This reduces the viability of the API business model by creating a dilemma:

Customers want useful, interpretable
predictions, but adversaries can use those
same predictions to steal model capabilities.

Dilemma

A legal dataset costs $2 million to initially
collect. The API can be used by adversaries to
generate an equivalent dataset for $10,000

Hypothetical Example

Prior Defenses: Truncation

● A rudimentary defense: truncating posteriors to their top-K values
● Used by OpenAI, AI21, etc. Posteriors are truncated to 2% of their original size
● This harms benign users and reduces external transparency

Prior Defenses: Prediction Poisoning

● Instead of truncating information, poison the posterior with a small perturbation on the
simplex (Orekondy et al., 2020)

● Design the perturbation to derail model stealing gradient updates
● Constrain the perturbation to be within epsilon of the true posterior

Prior Defenses: Prediction Poisoning

● Instead of truncating information, poison the posterior with a small perturbation on the
simplex (Orekondy et al., 2020)

● Design the perturbation to derail model stealing gradient updates
● Constrain the perturbation to be within epsilon of the true posterior

This method (MAD) requires one backward pass per
class per query (expensive and slow!)

● A similar approach in spirit, but markedly different in practice
● Maximize the inner product between the gradient update and a target z
● This is a linear program! How can we solve it efficiently?
● The problem resembles a knapsack problem, but with specific structure

Gradient Redirection

● Greedy algorithms can help
● We develop a provably correct, highly efficient

algorithm for solving gradient redirection.

Gradient Redirection

● High-level sketch: Establish the greedy choice
property and optimal substructure for a hierarchy
of problems. The proof follows by induction.

● But we still have to compute n backwards
passes, right?

Gradient Redirection: double backprop

● We circumvent the direct computation of G via double backprop
● Instead of n backward passes, we only need one double backprop

(~3 additional forward passes)

GRAD2 defense

● Our full defense incorporates gradient redirection at its core
● Surrogate networks are used, since the adversary’s network is hidden
● The surrogate’s gradient update can be steered in any target direction
● This transfers to the adversary!

Results

● For a given perturbation budget, we outperform numerous baselines
● In practice, we are substantially faster than MAD

Thank you

