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Model Stealing Attacks

e Adversaries can query public machine learning APIls and train copycat models
e This reduces the viability of the API business model by creating a dilemma:

Dilemma

Customers want useful, interpretable
predictions, but adversaries can use those
same predictions to steal model capabilities.

Hypothetical Example

A legal dataset costs S2 million to initially
collect. The API can be used by adversaries to
generate an equivalent dataset for $10,000




Prior Defenses: Truncation

e A rudimentary defense: truncating posteriors to their top-K values
e Used by OpenAl, Al21, etc. Posteriors are truncated to 2% of their original size
e This harms benign users and reduces external transparency
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Prior Defenses: Prediction Poisoning

e Instead of truncating information, poison the posterior with a small perturbation on the

simplex (Orekondy et al., 2020)

e Design the perturbation to derail model stealing gradient updates
Constrain the perturbation to be within epsilon of the true posterior
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Prior Defenses: Prediction Poisoning

e Instead of truncating information, poison the posterior with a small perturbation on the
simplex (Orekondy et al., 2020)

e Design the perturbation to derail model stealing gradient updates
Constrain the perturbation to be within epsilon of the true posterior

This method (MAD) requires one backward pass per
class per query (expensive and slow!)




Gradient Redirection

A similar approach in spirit, but markedly different in practice

Maximize the inner product between the gradient update and a target z
This is a linear program! How can we solve it efficiently?

The problem resembles a knapsack problem, but with specific structure
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Gradient Redirection

e Greedy algorithms can help
e \We develop a provably correct, highly efficient
algorithm for solving gradient redirection.

Theorem 4.1. Given a gradient redirection problem
(G, z,y, €) as formulated in (2), Algorithm 1 outputs a glob-
ally optimal solution in O(nlog(n)) time.

e High-level sketch: Establish the greedy choice
property and optimal substructure for a hierarchy
of problems. The proof follows by induction.

e But we still have to compute n backwards
passes, right?

Algorithm 1 Gradient Redirection

Input: G, z, y, €
Output: y
Yy
s + argsort(Gz)
Ys, < min(y,, +€/2, 1)
A0
t+1
while ¢t < n do
gst — Hlax(ysz i (6/2 il )‘) 0)
if ys, — (¢/2 — X\) > 0 then
Return y
end if
A A+ ys,
t—t+1
end while




Gradient Redirection: double backprop

e \We circumvent the direct computation of G via double backprop
e Instead of n backward passes, we only need one double backprop
(~3 additional forward passes)



GRAD? defense

Our full defense incorporates gradient redirection at its core
Surrogate networks are used, since the adversary’s network is hidden
The surrogate’s gradient update can be steered in any target direction
This transfers to the adversary!
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Results

e For a given perturbation budget, we outperform numerous baselines
e In practice, we are substantially faster than MAD

ImageNet-C10 — CIFAR-10 ImageNet-C100 — CIFAR-100 ImageNet-CUB200 — CUB200

X CI. B ¢, Distance NCIE B ¢, Distance A CIf. Err ¢, Distance

Method 1 2 5 01 02 05 1 2 § 061 02 05 1 2 5 01 92 95

Random 9.8 10.3 10.6 9.0 8.7 9.3 38.5 38.6 39.8 36.2 36.5 38.5 48.5 51.4 56.0 41.3 42.3 50.7
Reverse Sigmoid - - - 90 91 93 - - - 363 36.8 380 - - - 41.2 426 459
Adaptive Mis. 104 11.9 16.3 9.0 9.6 12.1 38.2 40.6 46.6 36.4 37.4 41.8 53.8 58.6 66.8 42.8 45.6 53.8
MAD 12.6 16.4 22.6 8.7 8.7 9.5 43.0 46.8 49.2 359 369 42.6 49.6 52.3 56.0 41.7 42.6 51.7

GRAD? (Ours) 16.4 21.5 23.4 9.5 10.1 15.5 43.4 47.6 53.0 36.5 37.7 44.1 54.1 56.4 60.7 41.8 44.6 55.6

Method CIFAR-10 CIFAR-100 CUB200

MAD 0.15 1.21 2.66
GRAD? 0.04 0.28 0.42




Thank you



