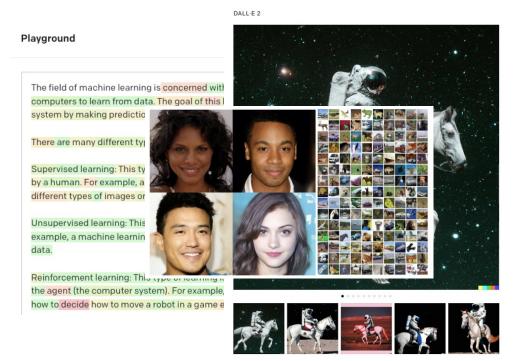
ButterflyFlow: Building Invertible Layers with Butterfly Matrices

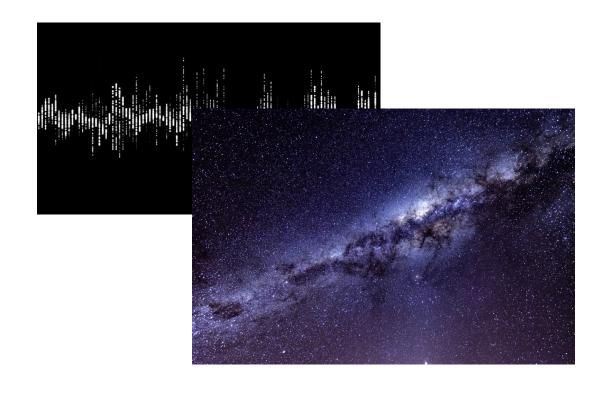
Chenlin Meng*, Linqi Zhou*, Kristy Choi*, Tri Dao, Stefano Ermon Stanford University

ICML 2022

Motivation and problem setup

Despite the recent successes of generative models, they struggle to capture special structures commonly found in real-world data, such as permutations and periodicity.





Normalizing flows

A normalizing flow models the exact data likelihood via a series of K invertible transformations $\{f_i\}_{i=0}^{K-1}$

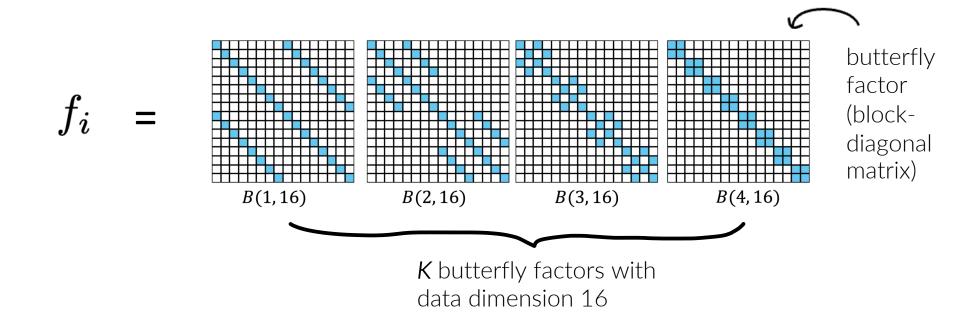
The data density evolves according to the change of variable formula:

$$p(\mathbf{x}) = p(\mathbf{z}_0) \sum_{i=0}^{K-1} |\det J_{f_i}(\mathbf{z}_i)|$$

Our approach: invertible Butterfly layer

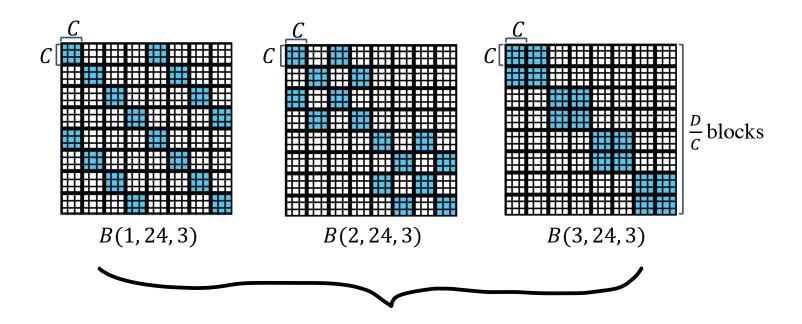
A butterfly layer f_i is a special family of linear layers that can be represented as a product of K butterfly factors.

Benefit: efficient computation of inverse and Jacobian determinant.



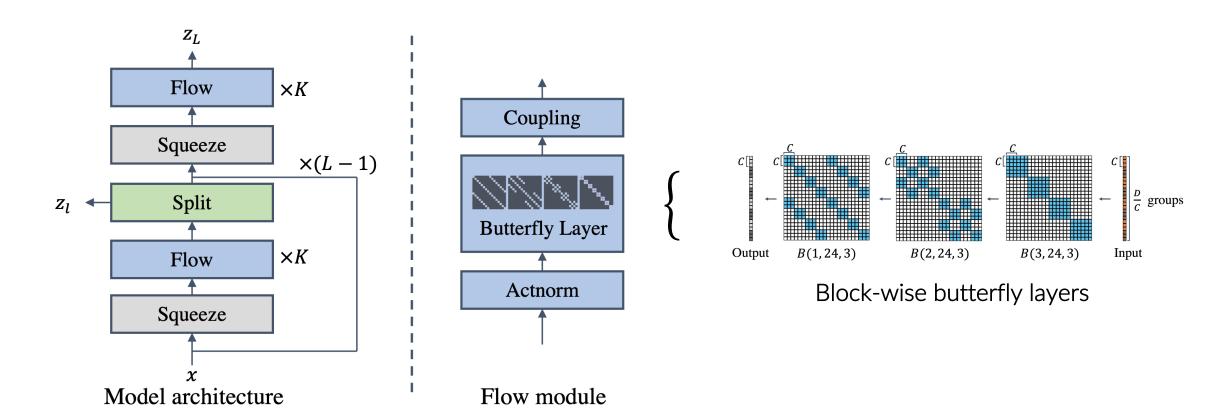
Block-wise Butterfly layers

Each primitive entry is a $C \times C$ block. Trades off expressivity with computation speed.



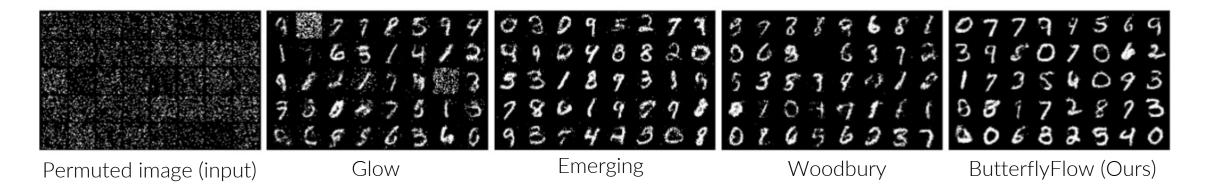
K butterfly factors with data dimension 24 and channel size 3

ButterflyFlow model



Glow-based backbone

Experiments: permuted data

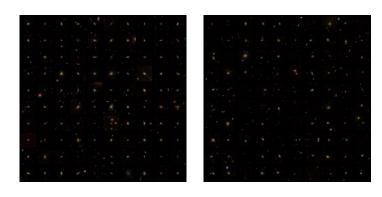


	MNIST	CIFAR-10	ImageNet 32×32
Glow (Kingma & Dhariwal, 2018)	1.44	5.48	6.29
Emerging (Hoogeboom et al., 2019)	1.43	5.41	6.25
Woodbury (Lu & Huang, 2020)	1.43	5.41	6.26
ButterflyFlow (Ours)	1.42	5.11	6.18

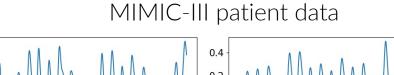
ButterflyFlow achieves strong density estimation results on both permuted and original natural image datasets (log-likelihoods in bits per dimension) relative to baselines.

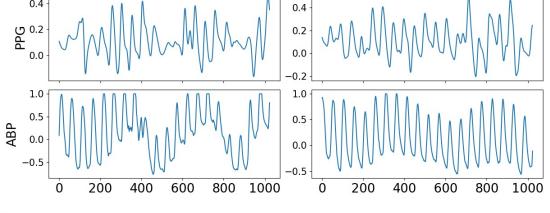
Experiments: periodic data

Galaxy dataset



	Galaxy
1 × 1 (Glow) (Kingma & Dhariwal, 2018)	2.02
Emerging 3×3 (Hoogeboom et al., 2019)	1.98
Periodic (Hoogeboom et al., 2019)	1.98
Woodbury (Lu & Huang, 2020)	2.01
ButterflyFlow (Ours)	1.95





	Patient 1	Patient 2	Patient 3	Avg.
Glow (Kingma & Dhariwal, 2018)	-7.21	-5.59	-6.41	-6.40
Emerging (Hoogeboom et al., 2019)	-6.91	-8.48	-7.25	-7.55
Periodic (Hoogeboom et al., 2019)	-8.47	-9.623	-8.73	-8.94
Woodbury (Lu & Huang, 2020)	-11.68	-11.83	-10.91	-11.47
ButterflyFlow (Ours)	-29.49	-27.07	-27.20	-27.92
			(F) (F) (F)	

ButterflyFlow achieves strong performance on datasets with periodic structures relative to baselines.

Twitter: @chenlin_meng, @linqi_zhou, @kristyechoi Email: chelin@stanford.edu

Thank you!

Chenlin Meng*

Linqi Zhou*

Kristy Choi*

Tri Dao

Stefano Ermon