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Bayesian Categorical Generalized Linear Models (GLMs)

Given N observations {(x;,y;)}, of covariates x; and categorical outcomes
yi € {1,..., K}, we assume

P =f BT X where f (e.g. softmax) maps RX to the simplex
NG
probability vector regression weights covariates

y; ~ Categorical( p; )
~~ ~—

outcome probability vector

Goal: Given a prior on B, we want to estimate the posterior.
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Goal: Given a prior on B, we want to estimate the posterior.

1. Different choices of f give different categorical GLMs with different
properties for Bayesian inference.

2. We will define a family of f that has nice properties.



Bayesian inference with existing models

Table 1: Assessment of categorical GLMs in terms of the presence (v ) or

absence (X ) of desirable features for simple, fast, scalable Bayesian inference

Model Inference Feature

Conditional  Closed-form | Invariance to  Closed-form | Embarassingly

conjugacy variational category category parallel

inference ordering probabilities across
categories

Softmax X X v v X
Multinomial Probit X X v X X
Softmax + Polya-Gamma aug. v X v v X
Stickbreaking-Softmax + Polya-Gamma aug. 4 4 X 4 X
Multinomial Probit + Albert-Chib aug. v v v X X
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(We pursue Bayesian inference for categorical GLMs that has all 5 features (and more))




Our approach: A new class of categorical GLMs

Independent binary (IB) models [a model giving easy Bayesian inference]

Let each observation y; = (¥i1, ..., Yix ) be a K-bit vector. (Example: K=3,
y; =(1,0,1).) The IB likelihood is the product of K binary regression likelihoods

K
B 5 1-3
pe(y; | B)= Hpiky'k (1—piw) ™,
k=1
where the k-th bit has a success probability pix = H(x [Aik) obtained by applying any
univariate cdf H (e.g., Logistic, Gaussian, etc.) to the dot product of covariates x;
and regression weights 3, specific to the k-th bit.
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Categorical-from-binary (CB) models [a new class of categorical GLMs]

CB models are GLMs for categorical data which obey the likelihood bound
pcs(vi | B) > ps(¥; = ey, | B = B)

where ey, is the one-hot indicator vector with value of 1 only at entry y;.



Inference

e Closed-form coordinate ascent variational inference (CAVI) already
exists for binary models and is easy, fast, and scalable.!

e So closed-form CAVI on IB models — which we call |IB-CAV/|
(Independent Binary Coordinate Ascent Variational Inference) —
exists with the same properties.

e By a quick argument, we see that IB-CAVI can be viewed as
maximizing the marginal likelihood of our CB models.

LConsonni and Marin, (2007), Computational Statistics & Data Analysis; Durante
and Rigon (2019), Statistical Science.



Inference

Opportunity: The posterior from IB-CAVI estimates the posterior of
multiple CB models. To illustrate, suppose there are K = 3 categories.

1. Categorical-from-binary-via-marginalization (CBM) models
normalize the marginal probabilities of success.

pcem(y = 1| B) x pig ()7 € {(1,070),(1., 1,0),(1,0,1),(1,1, 1)} | B)

2. Categorical-from-binary-via-conditioning (CBC) models condition on
the event that the K-bit vector has exactly one positive entry.

5 € {(1,0,0),(0,1,0),(0,0,1)}, B)

pcec(y =1| B) = pi (JA/ = (1,0,0)

Bayesian model averaging improves inference quality!



Evaluation

We find that IB-CAVI (with BMA) delivers similar predictive performance
as alternatives, while requiring far less time to get there.
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Figure 1: Predicting a computer user’s process starts (with 1,553 categories,
1,553 covariates, and 17,724 examples) in an intruder detection experiment. 7
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