TRAINING YOUR SPARSE NEURAL NETWORK BETTER WITH ANY MASK Ajay Jaiswal, Haoyu Ma, Tianlong Chen, Ying Ding, and Zhangyang Wang **AJAY JAISWAL** PhD Student, The University of Texas at Austin #### Introduction - DNNs are overparameterized, and recent research effort is focused on designing sophisticated pruning methods to yield high quality independently trainable sparse subnetworks. - **Under-explored theme**: improving training techniques for existing pruned subnetworks, i.e. sparse training. - **Big question:** Can we carefully customize the sparse training techniques to deviate from the default dense network training protocols? #### Our contribution A curated and easily adaptable training toolkit (ToST) for training ANY sparse mask from scratch: - "ghost" skip-connection (injecting additional non-existent skip-connections in the sparse masks), - "ghost" soft neurons (changing the ReLU neurons into smoother activation functions such as Swish or Mish), - as well as modifying initialization and labels. Figure 2. Top eigenvalues (Hessian) analysis of the training trajectory of a ResNet-18 sparse mask (90% sparsity) identified by LTH (Frankle & Carbin, 2018) using CIFAR-100. | Activation | Layer 1 | Layer 2 | Layer 3 | Layer 4 | |------------|---------|---------|---------|---------| | ReLU | 27.14% | 39.33% | 39.48% | 57.93% | | Swish | 0.31% | 0.26% | 0.24% | 0.20% | | Mish | 1.09% | 1.14% | 1.03% | 0.95% | Table 1. Layer-wise Activation sparsity of ResNet-18 sparse mask (90% sparsity) identified by LTH (Frankle & Carbin, 2018) and trained with CIFAR-100. ## Our Toolkit (ToST) Figure 4. Our modified ResNet-18 block to introduce additional "ghost" skip-connections for the initial stage of sparse training. **Ghost Skips (GSk),** we introduced gate functions regulated by a hyperparameter α, which controls the contribution of GSk during the training. Figure 5. PSwish Visualization with different β values. **Ghost Swish (GSw),** we gradually increase the β value of GSw, leading to be alike ReLU. Label Smoothening $$L_{\mathrm{LS}} = -\sum_{k=1}^{K} y_k \log{(p_k)}$$ $$y_k^{LS} = y_k (1-\alpha) + \alpha/K$$ Layer-wise Re-scaled initialization (LRsI): Balance between random re-initialization of sparse subnetworks and directly copying the default dense initialization. LRsI keep original initialization of sparse masks intact for each parameter block and just re-scaled it by a learned scalar coefficient. ### **Experimental Results** | Sparse Mask | CIFAR-10 | | | CIFAR-100 | | | | |-------------------------------|------------------|------------------|------------------|--------------------|------------------|------------------|--| | Spurse mann | 90% | 95% | 98% | 90% | 95% | 98% | | | ResNet-32 [No Pruning] | 94.80 | - | - | 74.64 | - | - | | | Random Pruning | 89.95 ± 0.23 | 89.68 ± 0.15 | 86.13±0.25 | 63.13 ± 2.94 | 64.55±0.32 | 19.83±3.21 | | | Random Pruning + ToST | 91.53 ± 0.11 | 91.44 ± 1.01 | 88.20 ± 0.89 | 65.19 ± 1.36 | 64.61 ± 1.21 | 33.98 ± 6.64 | | | SNIP (Lee et al., 2018) | 92.26 ± 0.32 | 91.18 ± 0.17 | 87.78 ± 0.16 | 69.31 ± 0.52 | 65.63 ± 0.15 | 55.70 ± 1.13 | | | SNIP + ToST | 92.83 ± 0.15 | 92.01 ± 0.21 | 88.12 ± 0.13 | 70.00 ± 0.09 | 68.46 ± 0.62 | 60.21 ± 1.96 | | | GraSP (Wang et al., 2020) | 92.20 ± 0.31 | 91.39 ± 0.25 | 88.70 ± 0.42 | 69.24 ± 0.24 | 66.50 ± 0.11 | 58.43 ± 0.43 | | | GraSP + ToST | 92.98 ± 0.07 | 92.77 ± 0.14 | 89.92 ± 0.56 | 70.18 ± 0.22 | 67.20 ± 0.74 | 62.30 ± 1.06 | | | SynFlow (Tanaka et al., 2020) | 92.01 ± 0.22 | 91.67 ± 0.17 | 88.10 ± 0.25 | 69.03 ± 0.20 | 65.23 ± 0.31 | 58.73 ± 0.30 | | | SynFlow + ToST | 93.39 ± 0.59 | 92.06 ± 0.32 | 91.82 ± 0.73 | 70.25 ± 0.06 | 67.90 ± 1.22 | 61.72 ± 0.84 | | | LTH (Frankle & Carbin, 2018) | 93.14 ± 0.30 | 92.98 ± 0.12 | 92.22 ± 0.61 | 71.11 ± 0.57 | 70.37 ± 0.19 | 69.02 ± 0.22 | | | LTH + ToST | 94.01 ± 0.23 | 93.60 ± 0.70 | 93.34 ± 1.06 | 72.30 ± 0.61 | 71.99 ± 0.95 | 70.22 \pm 0.61 | | | ResNet-50 [No Pruning] | 94.90 | - | - | 74.91 | - | - | | | Random Pruning | 85.11±4.51 | 88.76 ± 0.21 | 85.32±0.47 | 65.67±0.57 | 60.23 ± 2.21 | 28.32±10.35 | | | Random Pruning + ToST | 92.73 ± 0.22 | 90.95 ± 1.22 | 87.11 ± 2.21 | 67.75 ± 1.32 | 63.60 ± 0.11 | 41.99 ± 4.51 | | | SNIP (Lee et al., 2018) | 91.95 ± 0.13 | 92.12 ± 0.34 | 89.26 ± 0.23 | 70.43 ± 0.43 | 67.85 ± 1.02 | 60.38 ± 0.78 | | | SNIP + ToST | 92.89 ± 0.53 | 92.56 ± 0.12 | 90.56 ± 0.19 | 70.79 ± 0.22 | 68.06 ± 0.09 | 61.51 ± 1.41 | | | GraSP (Wang et al., 2020) | 92.10 ± 0.21 | 91.74 ± 0.35 | 89.97 ± 0.25 | 70.53 ± 0.32 | 67.84 ± 0.25 | 63.88 ± 0.45 | | | GraSP + ToST | 92.64 ± 0.17 | 92.33 ± 0.09 | 90.94 ± 0.35 | 70.89 ± 0.21 | 68.09 ± 0.12 | 65.01 ± 0.33 | | | SynFlow (Tanaka et al., 2020) | 92.05 ± 0.20 | 91.83 ± 0.23 | 89.61 ± 0.17 | 70.43 ± 0.30 | 67.95 ± 0.22 | 63.95 ± 0.11 | | | SynFlow +ToST | 92.55 ± 0.10 | 92.57 ± 0.18 | 90.27 ± 0.29 | $70.86 {\pm} 0.21$ | 68.83 ± 0.15 | 65.40 ± 0.13 | | | LTH (Frankle & Carbin, 2018) | 93.69 ± 0.31 | 93.18 ± 0.17 | 92.79 ± 0.14 | 71.89 ± 0.11 | 71.05 ± 0.13 | 70.41 ± 0.28 | | | LTH + ToST | 94.37 ± 0.06 | 94.01 ± 0.32 | 92.94 ± 0.21 | 73.69 ± 0.13 | 72.20 ± 0.15 | 71.93 ± 0.34 | | | Algorithm | 85% | 90% | 95% | |------------------------------|------------------|------------------|------------------| | SNIP (Lee et al., 2018) | 58.91 ± 0.23 | 56.15 ± 0.31 | 51.19 ± 0.47 | | SNIP + ToST | 59.44 ± 0.09 | 57.19 ± 0.21 | 53.21 ± 0.08 | | LTH (Frankle & Carbin, 2018) | 60.11 ± 0.13 | 58.46 ± 0.17 | 53.19 ± 0.31 | | LTH + ToST | 61.52 ± 0.32 | 58.96 ± 0.08 | 54.76 ± 0.22 | $\textit{Table 3. Classification accuracies on TinyImageNet for varying sparsities } s \in \{90\%, 95\%, 98\%\} \text{ using ResNet-50.}$ Table 2. Classification accuracies of various pruning algorithm for varying sparsities $s \in \{90\%, 95\%, 98\%\}$ and network architectures (ResNet-18 and 32) with and without our sparse training toolkit (ToST). #### **Experimental Results** | Method | 75% | 80% | 85% | 90% | 95% | |------------------------------|------------------|------------------|------------------|------------------|--------------------| | LTH (Frankle & Carbin, 2018) | 73.21 ± 0.17 | 72.94 ± 0.12 | 71.91 ± 0.22 | 71.12 ± 0.30 | 69.57±0.19 | | LTH + GSk | 73.77 ± 0.11 | 73.69 ± 0.25 | 72.86 ± 0.30 | 72.17 ± 0.23 | 71.72 ± 0.22 | | LTH + GSw | 73.45 ± 0.13 | 73.22 ± 0.43 | 73.27 ± 0.31 | 72.03 ± 0.12 | $70.85 {\pm} 0.52$ | | LTH + LRsI | 73.93 ± 0.15 | 73.12 ± 0.13 | 72.30 ± 0.19 | 71.83 ± 0.32 | 69.98 ± 0.29 | | LTH + LS | 73.58 ± 0.28 | 73.70 ± 0.32 | 72.65 ± 0.25 | 71.93 ± 0.20 | 70.19 ± 0.14 | | LTH + ToST | 74.29±0.31 | 74.03±0.14 | 73.90±0.49 | 73.23±0.27 | 72.08 ± 0.10 | Table 4. Breakdown of the performance of individual tweaks in ToST tweaks when applied on training ResNet-18 sparse masks (LTH) with varying sparsities $s \in \{75\%, 80\%, 85\%, 90\%, 95\%\}$ and trained on CIFAR-100. | | Dense NN (0%) | 20% | 75% | 95% | |-------------|---------------|--------|--------|--------| | "GSk" "GSw" | -0.77% | +0.03% | +0.56% | +2.15% | | | +0.11% | +0.29% | +0.24% | +1.28% | Table 5. Performance benefit of "GSK" and "GSW" when applied to dense networks (0%) sparsity, low sparsity (20%), mid-level sparsity (75%), and high sparsity (95%). We have used LTH sparse mask of ResNet-18 trained on CIFAR-100. ## **Experimental Results** Figure 6. Performance comparison of the "Ghostiliness" behaviour of GSk and GSw with the default prolonged injection of swish and skip connections for LTH sparse masks with varying sparsities $s \in \{80\%, 85\%, 90\%, 95\%\}$. Figure 7. Performance comparison of sparse masks by LTH at varying sparsities $s \in [20\% - 97\%]$ on CIFAR-10 and CIFAR-100. # Thank you!