

The University of Texas at Austin

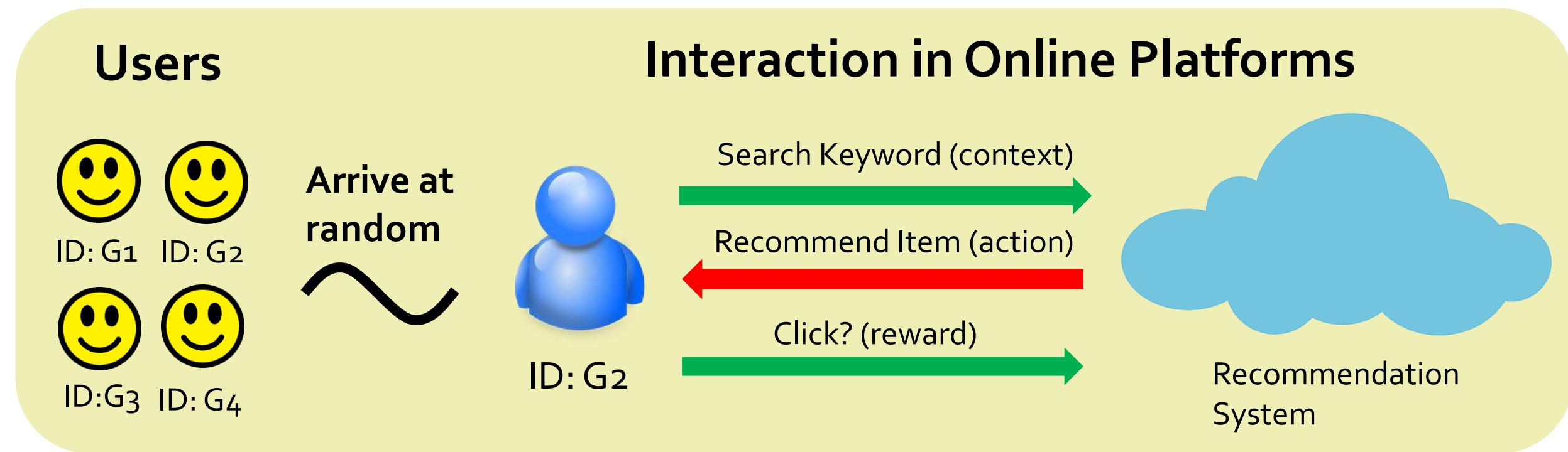
Coordinated Attacks against Contextual Bandits

Fundamental Limits and Defense Mechanisms

by **Jeongyeol Kwon***, Yonathan Efroni, Constantine Caramanis, Shie Mannor

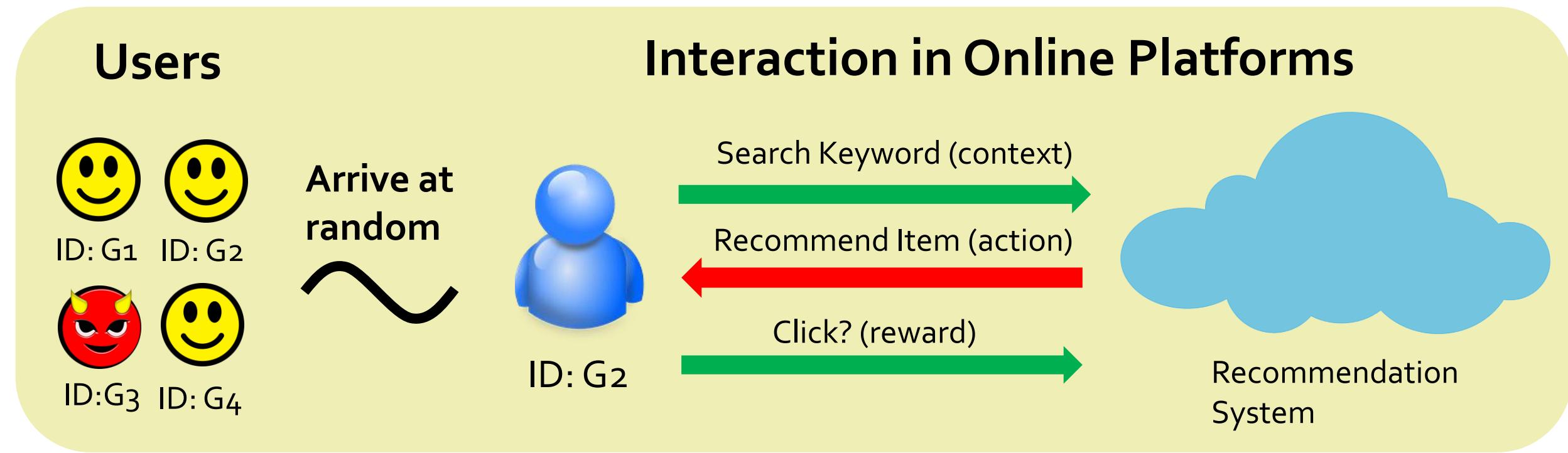
ICML 2022

Contextual Bandits with Adversaries



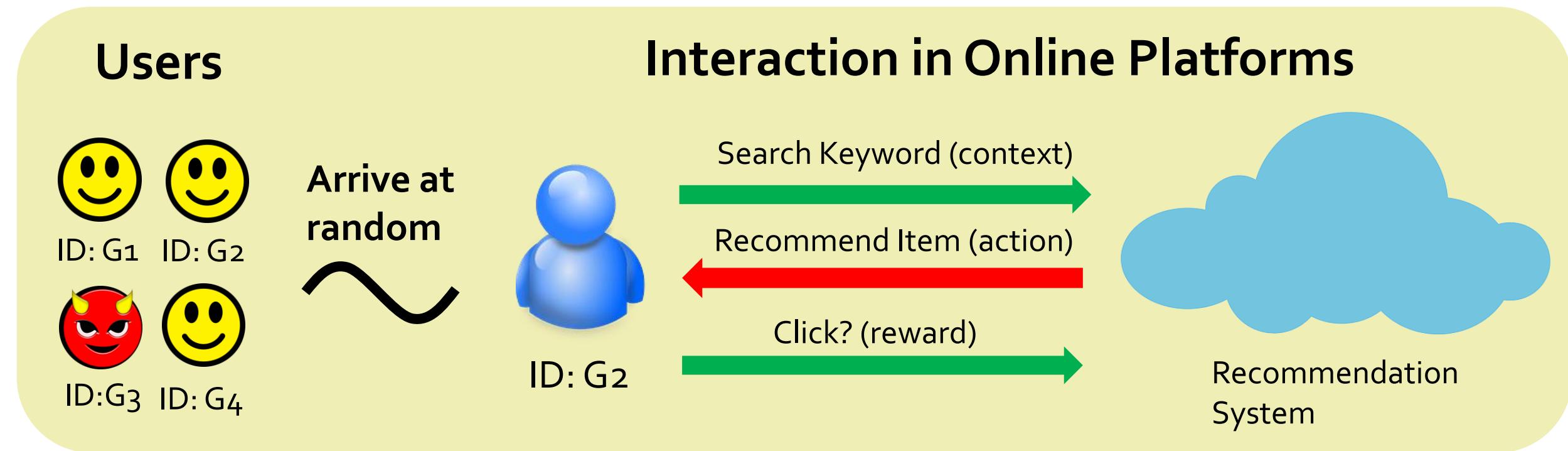
- Contextual Bandits
 - $\mathcal{B} := (\mathcal{S}, \mathcal{A}, \mu)$: S contexts, A items, μ -- mean-rewards

Contextual Bandits with Adversaries



- Contextual Bandits
 - $\mathcal{B} := (\mathcal{S}, \mathcal{A}, \mu)$: S contexts, A items, μ -- mean-rewards

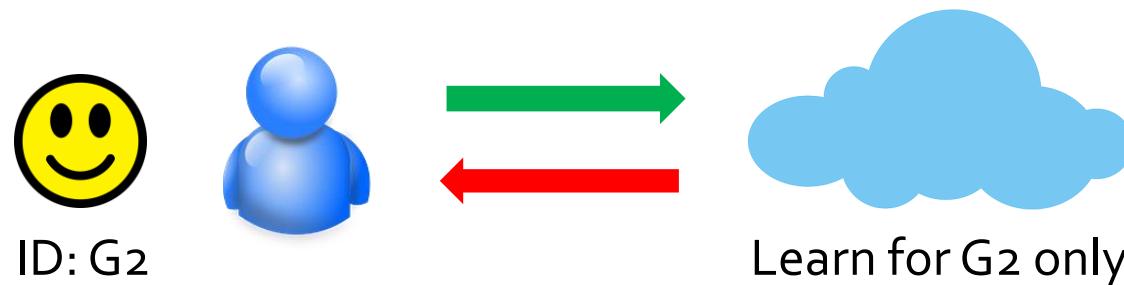
Contextual Bandits with Adversaries



- Contextual Bandits
 - $\mathcal{B} := (\mathcal{S}, \mathcal{A}, \mu)$: S contexts, A items, μ -- mean-rewards
- Multi-task(user) learning with adversaries
 - $1 - \alpha$ good users: $r(s, a) \sim \mathcal{B}$
 - α adversaries: $r(s, a) \in \mathbb{R}$, arbitrary – confuse the system
 - ***Unknown which users (with known IDs) are adversaries***

Goal – Parallelization Gain

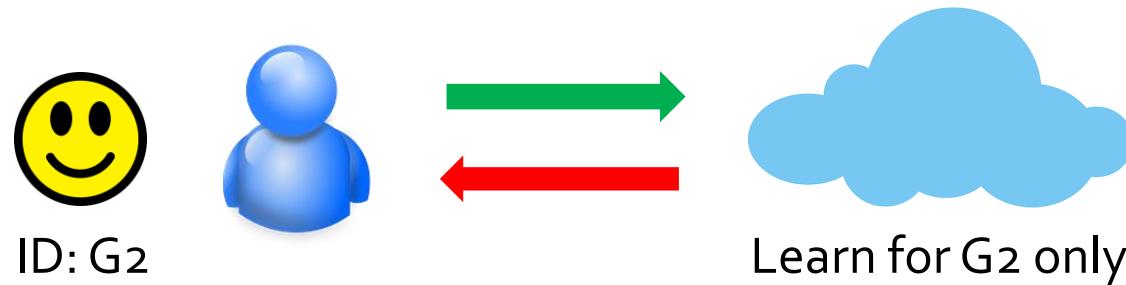
- Learn ϵ -optimal policy separately



Standard Contextual Bandits:
 $O\left(\frac{SA}{\epsilon^2}\right)$ per-user samples

Goal – Parallelization Gain

- Learn ϵ -optimal policy separately

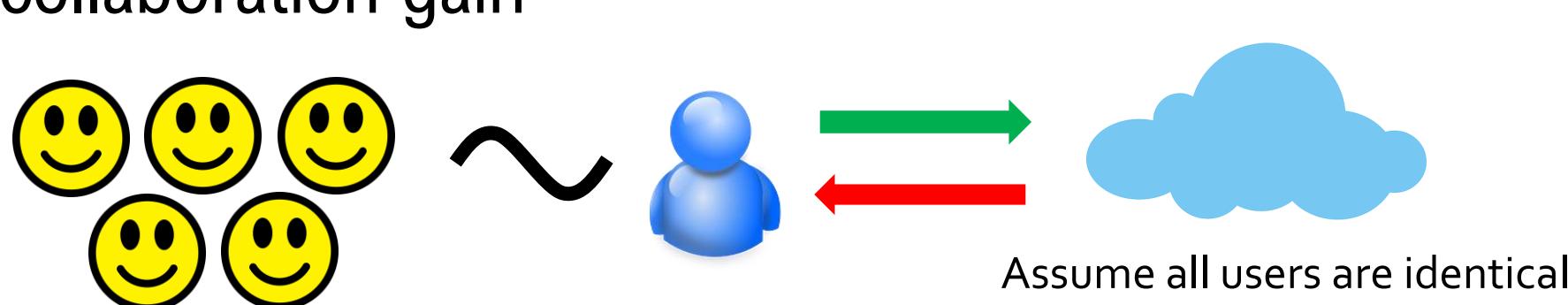


Standard Contextual Bandits:
 $O\left(\frac{SA}{\epsilon^2}\right)$ per-user samples

- Exploit similarity between users

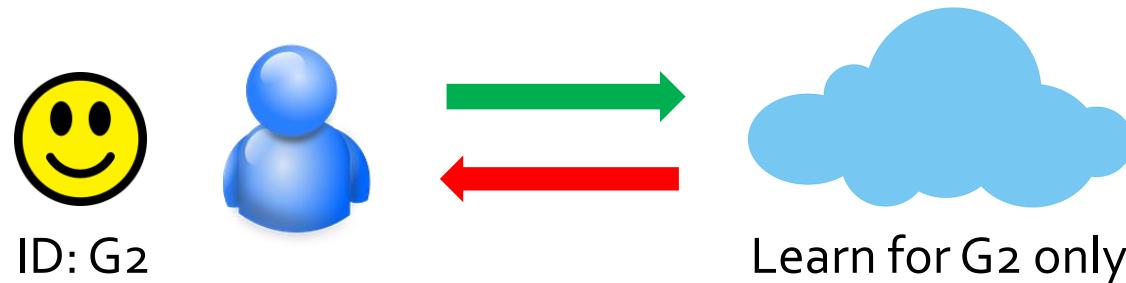
- With L -good users: $O\left(\frac{1}{L} \cdot \frac{SA}{\epsilon^2}\right)$ per-user samples

- $\frac{1}{L}$ - collaboration gain



Goal – Parallelization Gain

- Learn ϵ -optimal policy separately

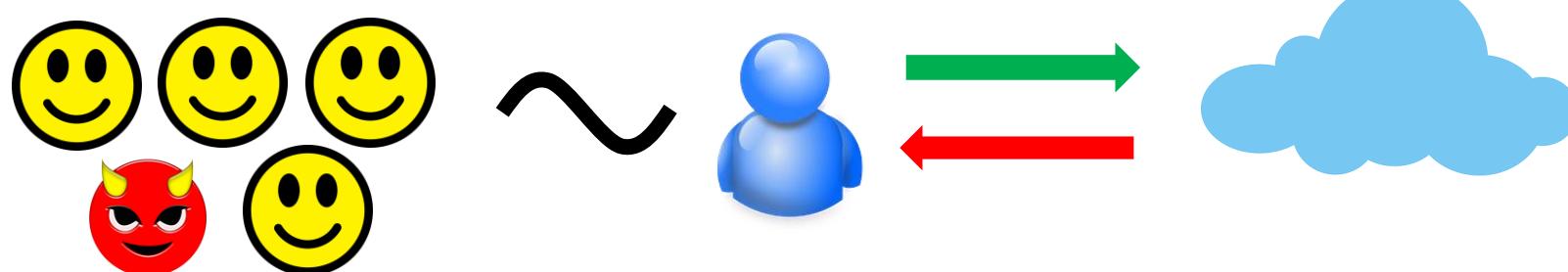


Standard Contextual Bandits:
 $O\left(\frac{SA}{\epsilon^2}\right)$ per-user samples

- Exploit similarity between users

- With L -good users: $O\left(\frac{1}{L} \cdot \frac{SA}{\epsilon^2}\right)$ per-user samples

- $\frac{1}{L}$ - collaboration gain

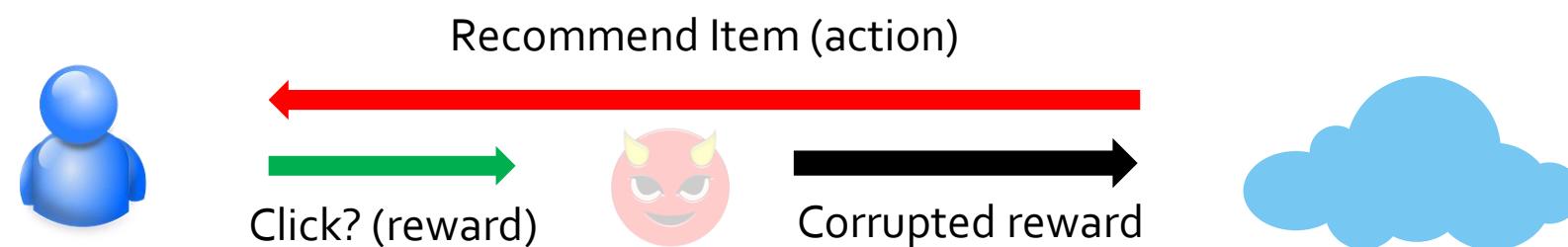


Q: What is the maximum parallelization gain if α -fraction of users are adversarial? ($\alpha < 1/2$)

Related Work

- Bandits with Adversarial Corruptions
 - *Single user, rewards corrupted at any time with limited budget*

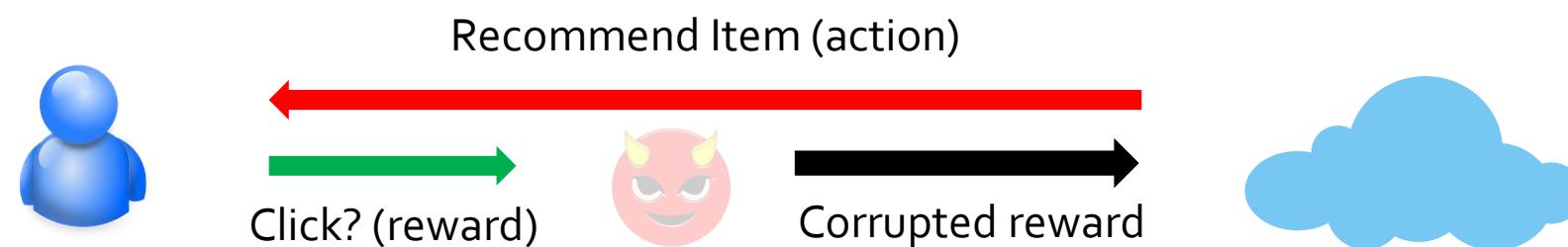
[Gupta et al., 2019; Lykouris et al., 2018, 2021; Liu et al., 2021]



Related Work

- Bandits with Adversarial Corruptions
 - *Single user*, rewards corrupted *at any time* with limited budget

[Gupta et al., 2019; Lykouris et al., 2018, 2021; Liu et al., 2021]



- Multitask Learning of Contextual Bandits
 - Multiple classes of users with separation

[Mailard and Mannor, 2014; Gopalan et al., 2016; Sen et al., 2017; Gentile et al., 2014; Yang et al., 2020; Ghosh et al., 2021; Hu et al., 2021]

Related Work

- Bandits with Adversarial Corruptions
 - *Single user*, rewards corrupted *at any time* with limited budget

[Gupta et al., 2019; Lykouris et al., 2018, 2021; Liu et al., 2021]

- Multitask Learning of Contextual Bandits
 - Multiple classes of users with separation

[Mailard and Mannor, 2014; Gopalan et al., 2016; Sen et al., 2017; Gentile et al., 2014; Yang et al., 2020; Ghosh et al., 2021; Hu et al., 2021]

- Our Work: 1 good-user class & adversaries (fake-profiles)

Main Result: Fundamental Limits

- With polynomial number of users:
 - i.e., $L = \text{poly}\left(S, A, \frac{1}{\epsilon}\right)$
 - $\Omega\left(\min(S, A) \cdot \frac{\alpha^2}{\epsilon^2}\right)$ - per-user samples are necessary
 - Thus, parallelization gain can be at most $\frac{\alpha^2}{\max(S, A)}$

Main Result: Fundamental Limits

- With polynomial number of users:
 - i.e., $L = \text{poly}\left(S, A, \frac{1}{\epsilon}\right)$
 - $\Omega\left(\min(S, A) \cdot \frac{\alpha^2}{\epsilon^2}\right)$ - per-user samples are necessary
 - Thus, parallelization gain can be at most $\frac{\alpha^2}{\max(S, A)}$
- Note: no “ $\min(S, A)$ ” if $L \geq \exp(\omega(S))$

Results Summary

- Multitask contextual bandits with adversarial users
- Lower Bound
 - $\Omega\left(\min(S, A) \cdot \frac{\alpha^2}{\epsilon^2}\right)$ - per-user samples are necessary
- Upper Bound
 - $O\left(\min(S, A) \cdot \frac{\alpha}{\epsilon^2}\right)$ - per-user samples are sufficient
 - Can be achieved with two robust estimators
- Some future directions
 - Investigate the gap on α
 - Extension to linear bandits / RL