Learning To Cut By Looking Ahead: Cutting Plane Selection via Imitation Learning

Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, Chris J. Maddison

Integer Programming

Integer programs are linear programs (LPs) with integral variables:

$$z^{OPT} := \min_{x} w^{\mathsf{T}} x$$
 subject to $Ax \le b, \ x \in \mathbb{Z}$ (1)

Integer Programming

Integer programs are linear programs (LPs) with integral variables:

$$z^{OPT} \coloneqq \min_{x} w^{\mathsf{T}} x$$
 subject to $Ax \le b, \ x \in \mathbb{Z}$ (1)

Solving integer programs (IPs) is hard, but ubiquitous...

Crew Scheduling

Power Production

Vehicle Routing

Server Load Balancing

Portfolio Optimization

Neural Network Verification

Integer Programming

Integer programs are linear programs (LPs) with integral variables:

$$z^{OPT} \coloneqq \min_{x} w^{\mathsf{T}} x$$
 subject to $Ax \le b, \ x \in \mathbb{Z}$ (1)

Solving integer programs (IPs) is hard, but ubiquitous...

WALLst

Portfolio Optimization

Neural Network Verification

Why ML? \rightarrow IPs are many and similar in most applications.

IPs can be solved with branch and bound (B&B):

global lower bound = 5.2

IPs can be solved with branch and bound (B&B):

global lower bound = 6.2

IPs can be solved with branch and bound (B&B):

global lower bound = 6.2

IPs can be solved with branch and bound (B&B):

heur. upper bound = 8 global lower bound = 6.2

IPs can be solved with branch and bound (B&B):

heur. upper bound = 8 global lower bound = 6.2

B&B uses the LP relax. $z^* = \min_x w^{\mathsf{T}} x$ s.t. $Ax \leq b$ (incl. branch cons.) to locally lower bound the objective and prune search space.

IPs can be solved with branch and bound (B&B):

B&B uses the LP relax. $z^* = \min_x w^{\mathsf{T}} x$ s.t. $Ax \leq b$ (incl. branch cons.) to locally lower bound the objective and prune search space.

Branch and Cut Algorithm (B&C)

B&C tightens the lower bound by adding a cut $C=(c,c_0)$,

$$z_C \coloneqq \min_x w^{\mathsf{T}} x$$
 subject to $Ax \le b, c^{\mathsf{T}} x \le c_0.$ (2)

Branch and Cut Algorithm (B&C)

B&C tightens the lower bound by adding a cut $C=(c,c_0)$,

$$z_C := \min_{x} w^{\mathsf{T}} x$$
 subject to $Ax \le b, c^{\mathsf{T}} x \le c_0.$ (2)

A cut C is an extra constraint satisfied by all feasible x of the IP...

..but not by $x^* \coloneqq \arg\min_x w^{\mathsf{T}} x$ s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ (LP relaxation).

Cutting Planes

In practice, many cuts $C \in \mathfrak{C}$ can be generated...

Cutting Planes

In practice, many cuts $C \in \mathcal{C}$ can be generated...

..but only *effective* cuts should be added, because every cut increases the complexity of resolving the linear program (2).

To date, modern B&C solvers use manual heuristics to select cuts.

To date, modern B&C solvers use *manual heuristics* to select cuts.

Instead, we leverage machine learning for cutting plane selection:

To date, modern B&C solvers use *manual heuristics* to select cuts.

Instead, we leverage *machine learning* for cutting plane selection:

Looking Ahead: Propose expensive but effective lookahead
criterion for cut selection, used as label for supervised training.

To date, modern B&C solvers use manual heuristics to select cuts.

Instead, we leverage *machine learning* for cutting plane selection:

- Looking Ahead: Propose expensive but effective lookahead criterion for cut selection, used as label for supervised training.
- Learning To Cut: Propose NeuralCut, a graph neural network (GNN) to imitate lookahead for cut selection.

Looking Ahead: Lookahead Criterion is strong but expensive

For a cut $C \in \mathcal{C}$, we define the lookahead score s_{LA} as...

$$s_{LA}(C) \coloneqq z_C - z^* \ge 0 \tag{3}$$

Looking Ahead: Lookahead Criterion is strong but expensive

For a cut $C \in \mathcal{C}$, we define the lookahead score s_{LA} as...

$$s_{LA}(C) \coloneqq z_C - z^* \ge 0 \tag{3}$$

Selecting $C^*_{LA} = \arg \max_{C \in \mathfrak{C}} s_{LA}(C)$ is effective on a benchmark...

Looking Ahead: Lookahead Criterion is strong but expensive

For a cut $C \in \mathcal{C}$, we define the lookahead score s_{LA} as...

$$s_{LA}(C) \coloneqq z_C - z^* \ge 0 \tag{3}$$

Selecting $C^*_{LA} = \arg \max_{C \in \mathcal{C}} s_{LA}(C)$ is effective on a benchmark...

..but computing $s_{LA}(C)$ for all $C \in \mathcal{C}$ is too expensive in practice.

Hence, we learn to imitate lookahead selection with NeuralCut.

Hence, we learn to imitate lookahead selection with NeuralCut.

To learn from IPs and cutpools, Neuralcut uses a tripartite graph...

NeuralCut is a GNN based on Gasse et al. (2019)...

NeuralCut is a GNN based on Gasse et al. (2019)...

..but adds more convolutions,

NeuralCut is a GNN based on Gasse et al. (2019)...

..but adds more convolutions, shortcuts

NeuralCut is a GNN based on Gasse et al. (2019)...

..but adds more convolutions, shortcuts and self-attention on cuts.

NeuralCut jointly predicts a score \hat{s}_C for each cut $C \in \mathcal{C}$..

NeuralCut jointly predicts a score \hat{s}_C for each cut $C \in \mathcal{C}$...

• to minimize a training log-loss over all cuts...

$$L(\hat{s}) := -\frac{1}{|\mathcal{C}|} \sum_{C \in \mathcal{C}} q_C \log \hat{s}_C + (1 - q_C) \log(1 - \hat{s}_C)$$
 (4)

..with soft targets
$$q_C = rac{s_{LA}(C)}{s_{LA}(C_{LA}^*)}$$
.

NeuralCut jointly predicts a score \hat{s}_C for each cut $C \in \mathcal{C}$...

• to minimize a training log-loss over all cuts...

$$L(\hat{s}) := -\frac{1}{|\mathcal{C}|} \sum_{C \in \mathcal{C}} q_C \log \hat{s}_C + (1 - q_C) \log(1 - \hat{s}_C)$$
 (4)

..with soft targets
$$q_C = \frac{s_{LA}(C)}{s_{LA}(C_{LA}^*)}$$
.

• and selects the cut $C_{NC}^* = \arg \max_{C \in \mathcal{C}} \hat{s}_C$ at test time.

Experimental Overview

We evaluate NeuralCut on a diverse range of IP families...

Experimental Overview

We evaluate NeuralCut on a diverse range of IP families...

• ..on pure cut selection..

..to select cuts that achieve tight bounds quickly

 $(\rightarrow \text{ small area above bound tightness curve}).$

Experimental Overview

We evaluate NeuralCut on a diverse range of IP families...

- ..on pure cut selection..
 - ..to select cuts that achieve tight bounds quickly
 - $(\rightarrow$ small area above bound tightness curve).
- ..as a plug-in of the SCIP¹ B&C solver...
 - ..to select *effective* cuts at root that speed up B&C search
 - $(\rightarrow \text{small } \textit{residual } \text{solving time after processing root}).$

¹Gamrath et al., 2020

Experiments: NeuralCut for pure cut selection

NeuralCut achieves tight bounds quickly on various IP families...

Area above bound tightness curve (\downarrow) on test instances, mean (ste), N=30

	Max. Cut	Packing	Bin. Packing	Planning
Lookahead	15.05 (0.09)	26.42 (0.07)	9.85 (0.33)	10.33 (0.04)
_ NeuralCut	15.55 (0.09)	26.30 (0.08)	10.96 (0.33)	10.42 (0.04)

²Tang et al., ICML 2020

Experiments: NeuralCut for pure cut selection

NeuralCut achieves tight bounds quickly on various IP families...

Area above bound tightness curve (\downarrow) on test instances, mean (ste), N=30

		Max. Cut	Packing	Bin. Packing	Planning
	Lookahead	15.05 (0.09)	26.42 (0.07)	9.85 (0.33)	10.33 (0.04)
ML	NeuralCut RL ²	15.55 (0.09) 19.00 (0.09)	26.30 (0.08) 27.59 (0.06)	10.96 (0.33) 16.06 (0.38)	10.42 (0.04) 14.94 (0.08)
Heuristics	Default Efficacy Obj. Parallelism IntSupport Random	16.72 (0.09) 17.01 (0.09) 24.01 (0.08) 21.87 (0.07) 21.99 (0.07)	26.29 (0.08) 26.28 (0.08) 28.28 (0.05) 28.78 (0.03) 28.73 (0.04)	15.42 (0.28) 15.19 (0.29) 22.23 (0.26) 21.14 (0.28) 21.23 (0.28)	14.01 (0.06) 14.52 (0.06) 27.71 (0.07) 23.31 (0.08) 23.26 (0.08)

..and outperforms heuristic scores and a competing RL approach.

²Tang et al., ICML 2020

Experiments: NeuralCut inside a B&C solver

Paired with an ϵ -threshold rule to run inside the SCIP B&C solver on (mixed) integer programs from neural network verification...

Experiments: NeuralCut inside a B&C solver

Paired with an ϵ -threshold rule to run inside the SCIP B&C solver on (mixed) integer programs from neural network verification...

Median performance on test instances

	# cuts	Rel. bound improv.	Residual Time (s)
Default (SCIP B&C)	279	1.00	23.65
NeuralCut $(\epsilon=10^{-5})$	105	1.00	22.35
$NeuralCut\ (\epsilon = 10^{-4})$	81	0.99	20.89
NeuralCut $(\epsilon=10^{-3})$	48	0.98	22.73

...NeuralCut achieves strong lower bounds at root with fewer cuts and speeds up the remaining B&C search.

We introduced NeuralCut, our approach

We introduced NeuralCut, our approach

 proposes the expensive lookahead criterion and shows it selects strong cuts,

We introduced NeuralCut, our approach

- proposes the expensive lookahead criterion and shows it selects strong cuts,
- demonstrates the effectiveness of imitation learning for cut selection on various IP benchmarks,

We introduced NeuralCut, our approach

- proposes the expensive lookahead criterion and shows it selects strong cuts,
- demonstrates the effectiveness of imitation learning for cut selection on various IP benchmarks,
- is **deeply integrated** into the SCIP solver (cut selection, separation, plug-in).

We introduced NeuralCut, our approach

- proposes the expensive lookahead criterion and shows it selects strong cuts,
- demonstrates the effectiveness of imitation learning for cut selection on various IP benchmarks,
- is deeply integrated into the SCIP solver (cut selection, separation, plug-in).

Code: We plan to make code available at github.com/mbp28.