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Easy: Optimal demonstrations

cost features f, f,, ...,



Easy: Optimal demonstrations

cost features f, f,, ...,

Pareto frontier



Easy: Optimal demonstrations

cost features f, f,, ...,
human demonstration(s),

Pareto frontier



Easy: Optimal demonstrations

Given cost features f, f,, ...,
learn weights w that make
human demonstration(s),
which must reside on the
Pareto frontier, optimal.



Easy: Optimal demonstrations

Given cost features f, f,, ...,
learn weights w that make
human demonstration(s),
which must reside on the
Pareto frontier, optimal.
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Given cost features f, f,, ...,
learn weights w that make
human demonstration(s),
which must reside on the
Pareto frontier, optimal.

Degenerate solutions (w=0)

/ exist, but can be avoided (Ng &
Russell 2000; Ratliff, Bagnell,
Zinkevich 2006)
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Feature Matching (Abbeel & Ng
2004): Matching expected features
guarantees equal expected
cost/reward (assuming linearity).

Approach: Mix optimal policies to
match features.

Limitations: Many solutions exist;
which policy to deploy?
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Harder: Suboptimal demonstrations

MaxEnt IRL (Ziebart et al. 2008):
Demonstrations are noisy with
probability oc e f

Apprenticeship learning:
estimate w, employ distribution
mode (i.e., minimize w-f).

Outliers violating noise model
can significantly shift the mode.

- Substantial amounts of related
1 work seek to “ignore” outliers.

Rankings/Confidences (Ibarz et al., 2018; Brown et al., 2019; Brown et al., 2020, Novoseller et al., 2020; Zhang et al.,
2021; Myers et al., 2021; Tangkaratt et al., 2020; 2021; Wang et al., 2021a; Wang et al. 2021b; Biyik et al., 2022)
Noise models (Evans et al., 2016; Majumdar et al., 2017; Reddy et al., 2018; Kwon et al., 2020; Zhi-Xuan et al., 2020)
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Visuomotor imprecision
(Wolpert et al. 1995)

Bounded rationality
(Simon, 1997) . &
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Defining Superhuman Behavior

A policy is superhuman if it has
smaller cost features f,, f,, ...
for all human demonstrations

Guarantees lower cost than
demonstration costs for family
of additive cost functions

Set of superhuman policies on
the Pareto frontier shrinks as
demonstrations grow

Can become empty!
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Superhuman Percentile & Subdominance

A policy is y-superhuman if it has
smaller cost features f , f,, ... than

I =
f, | o e V7 of human demonstrations
1 @
1 - Subdominance measures how far a
o—— policy is from superhuman by some
I ‘- IIIIIIIII l.l = = = margins

Minimum Subdominance Inverse
Optimal Control seeks policies on
the Pareto frontier minimizing this

Subdominance bounds the
1 superhuman percentile
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Linear-quadratic regulation formulation:
— 2 y 2 v 2
Cost(s,) = o, , X"+ QU ; X°+ Oy X7+ ...
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And much more...

* Relationships to suboptimality
 SVM analogies

* Consistency/generalization

* Cleaning/noise experiments

Poster: Hall E #827



