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Formulation: Rationalize/match performance
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Given cost features f1, f2, …, 
learn weights w that make 
human demonstration(s), 
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Zinkevich 2006) 
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Feature Matching (Abbeel & Ng 
2004): Matching expected features 
guarantees equal expected 
cost/reward (assuming linearity).

Approach: Mix optimal policies to 
match features.

Limitations: Many solutions exist; 
which policy to deploy?
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MaxEnt IRL (Ziebart et al. 2008): 
Demonstrations are noisy with 
probability ∝ e-w·f

Apprenticeship learning: 
estimate w, employ distribution 
mode (i.e., minimize w·f).

Outliers violating noise model 
can significantly shift the mode.

Substantial amounts of related 
work seek to “ignore” outliers.f1

f2

Harder: Suboptimal demonstrations

Rankings/Confidences (Ibarz et al., 2018; Brown et al., 2019; Brown et al., 2020, Novoseller et al., 2020; Zhang et al., 
2021; Myers et al., 2021; Tangkaratt et al., 2020; 2021; Wang et al., 2021a; Wang et al. 2021b; Bıyık et al., 2022)
Noise models (Evans et al., 2016; Majumdar et al., 2017; Reddy et al., 2018; Kwon et al., 2020; Zhi-Xuan et al., 2020)
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Visuomotor imprecision 
(Wolpert et al. 1995)
Bounded rationality
(Simon, 1997)
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Defining Superhuman Behavior

A policy is superhuman if it has 
smaller cost features f1, f2, … 
for all human demonstrations

Guarantees lower cost than 
demonstration costs for family 
of additive cost functions

Set of superhuman policies on 
the Pareto frontier shrinks as 
demonstrations grow

Can become empty!
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Superhuman Percentile & Subdominance
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A policy is γ-superhuman if it has 
smaller cost features f1, f2, … than 
γ% of human demonstrations

Subdominance measures how far a  
policy is from superhuman by some 
margins

Minimum Subdominance Inverse 
Optimal Control seeks policies on 
the Pareto frontier minimizing this

Subdominance bounds the 
superhuman percentile
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Cursor Pointing Task

Linear-quadratic regulation formulation:
Cost(st) = αx,x xt

2 + αx,x xt
2 + αx,x xt

2 + …
.

. .
..

.. ..
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outliers! 

γ=78%
γ=50%

MinSub IOC only 
sensitive to ∑t xt
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And much more…

• Relationships to suboptimality
• SVM analogies
• Consistency/generalization
• Cleaning/noise experiments

Poster: Hall E #827


