

Towards Uniformly Superhuman Autonomy via Subdominance Minimization

Brian D. Ziebart, Sanjiban Choudhury,
Xinyan (Shane) Yan, and Paul Vernaza

How should we think about
imitation learning?

“Imitation is the sincerest form
of flattery that mediocrity can
pay to greatness.”

Oscar Wilde

“Imitation is the sincerest form of flattery that mediocrity can pay to greatness.”

Oscar Wilde

Gold standard human demonstrations

(Near) Optimal, minimum noise, known biases

“Imitation is the sincerest form of flattery that mediocrity can pay to greatness.”

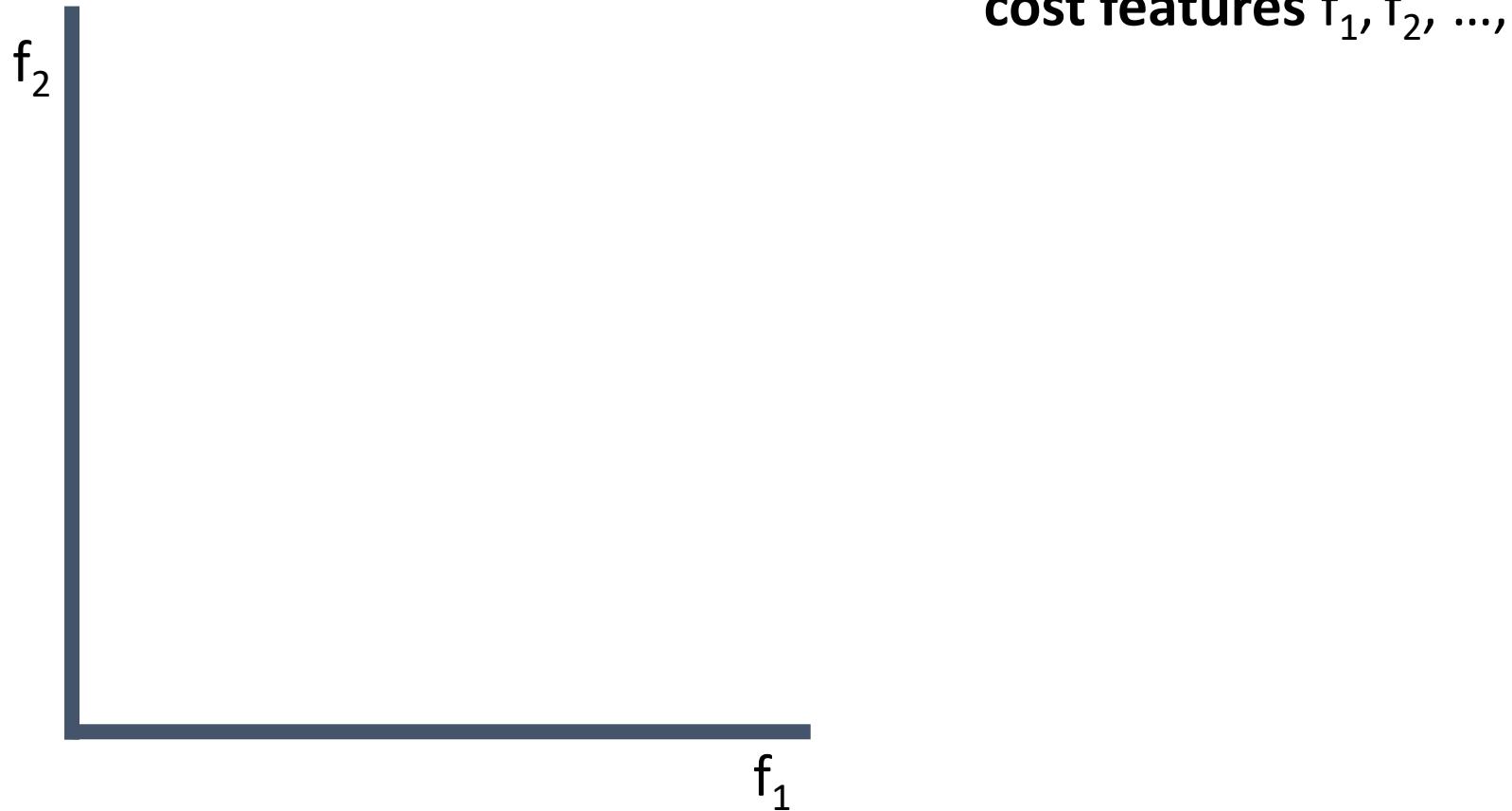
Oscar Wilde

Gold standard human demonstrations

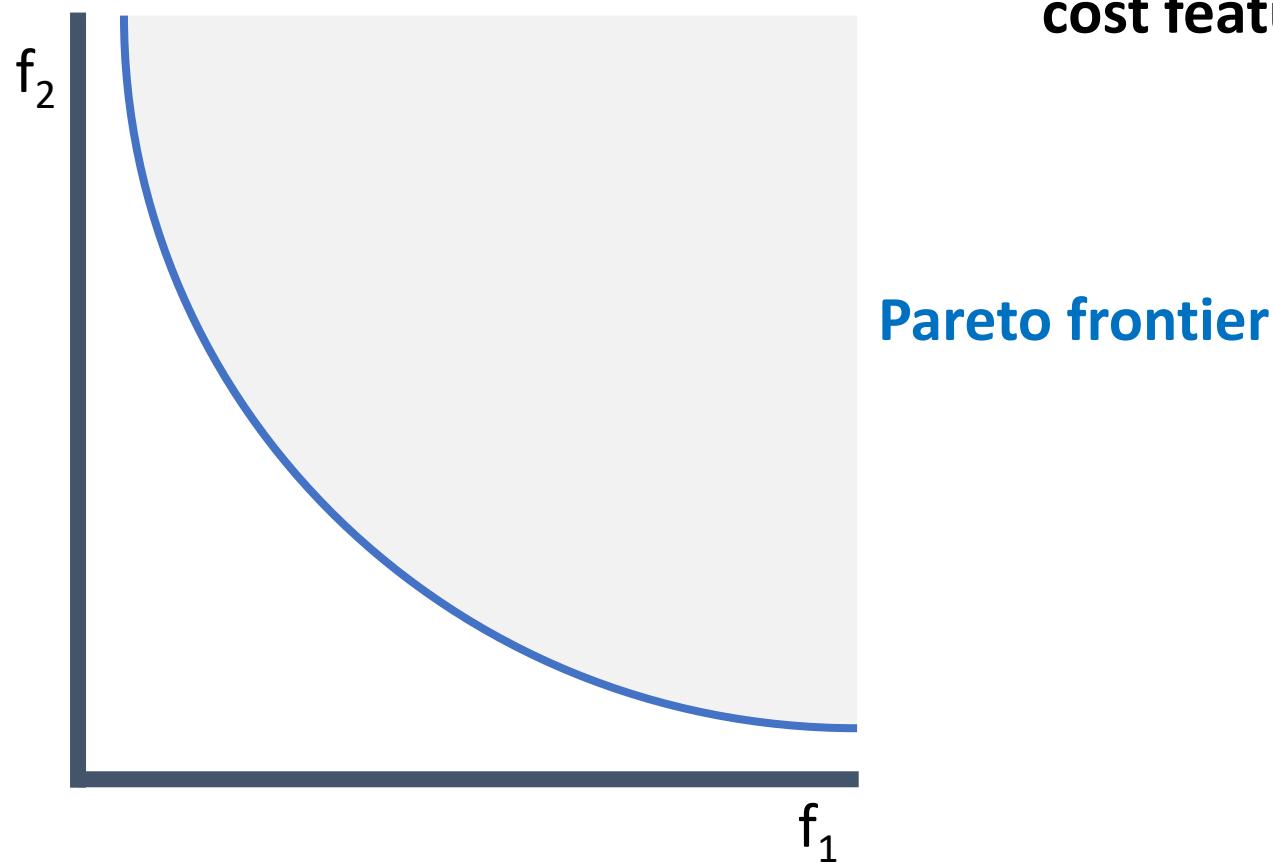
(Near) Optimal, minimum noise, known biases

Formulation: Rationalize/match performance

Easy: Optimal demonstrations

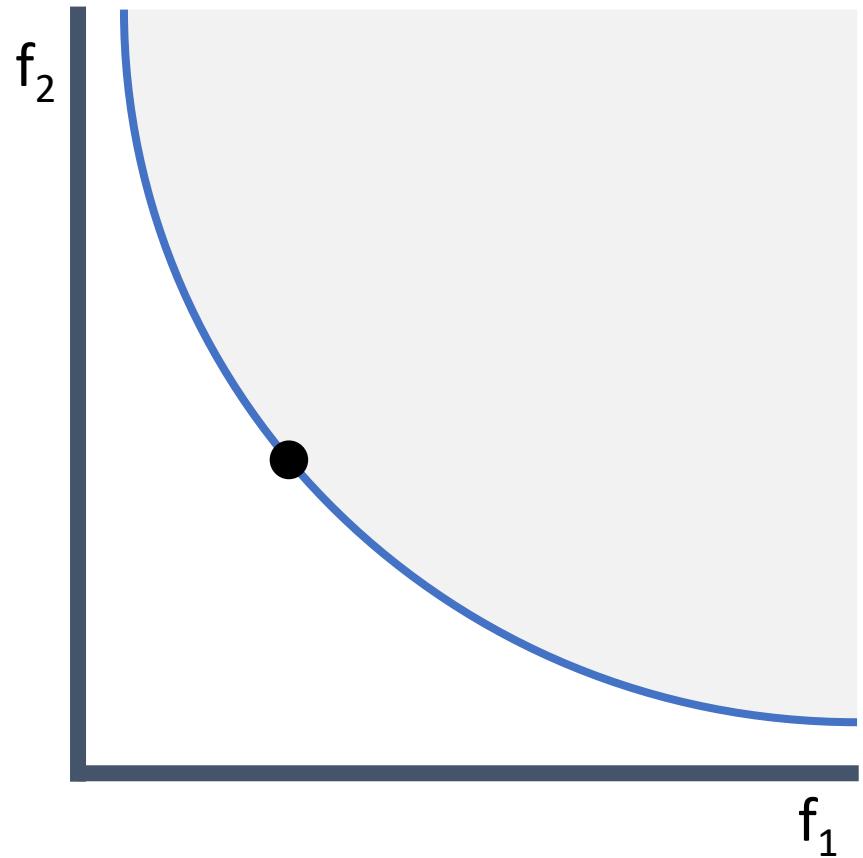


Easy: Optimal demonstrations



cost features f_1, f_2, \dots

Easy: Optimal demonstrations

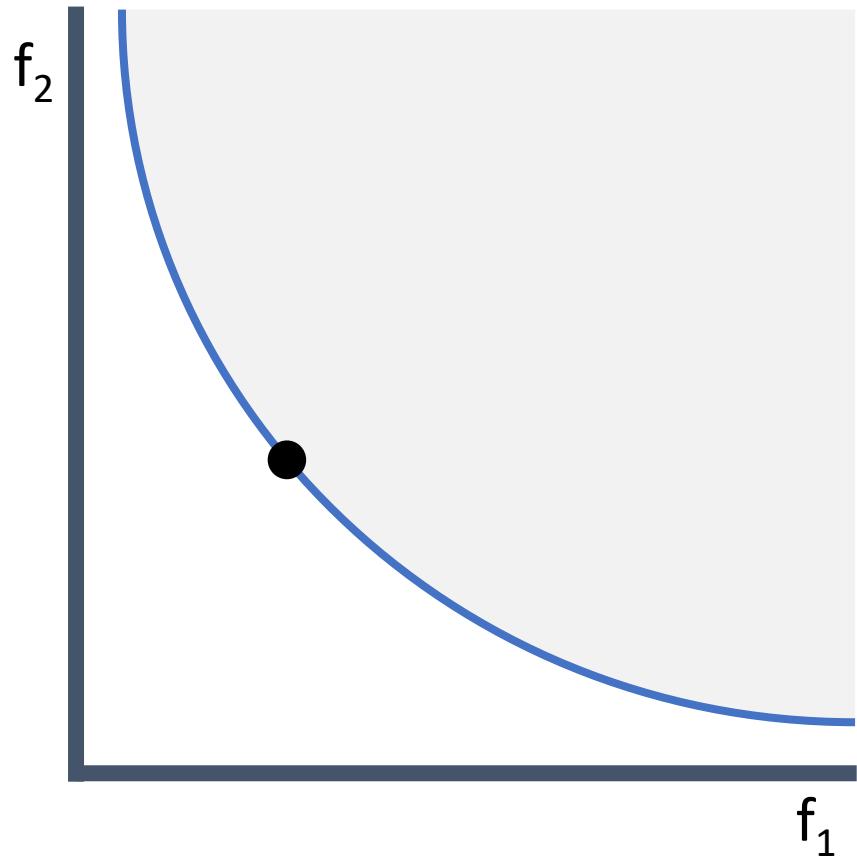


cost features $f_1, f_2, \dots,$

human demonstration(s),

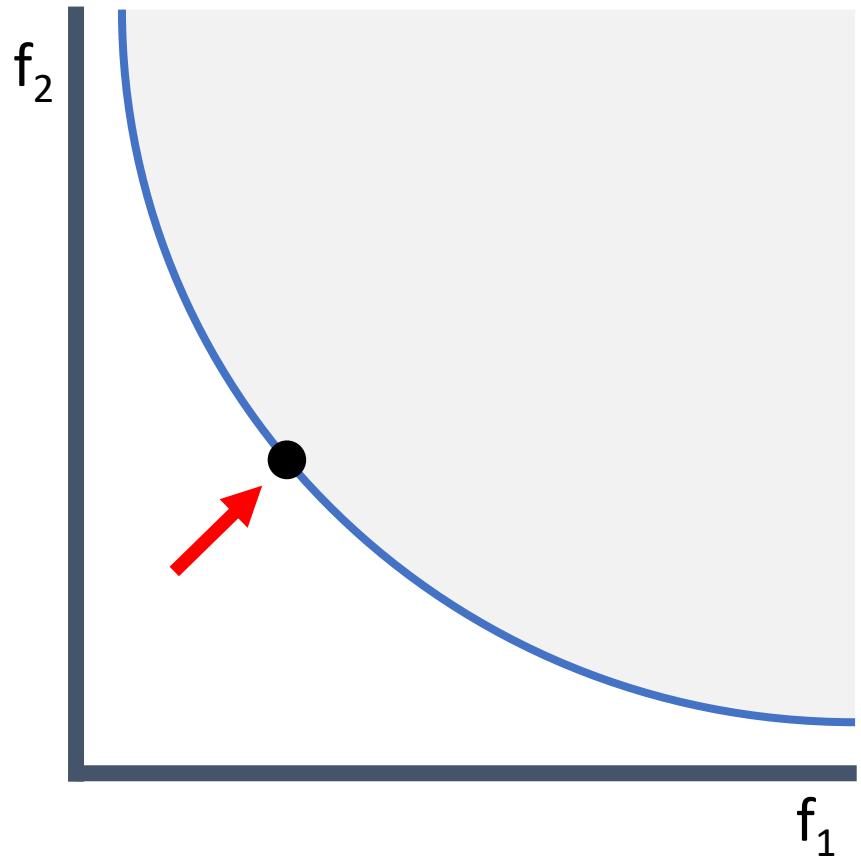
Pareto frontier

Easy: Optimal demonstrations



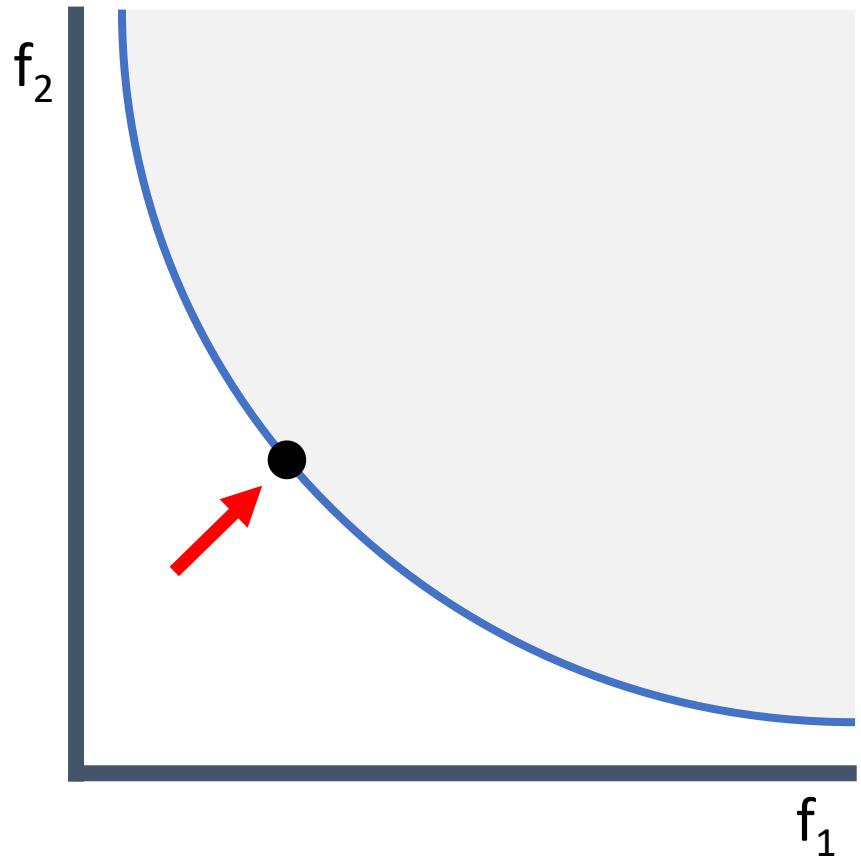
Given **cost features** f_1, f_2, \dots , learn weights **w** that make **human demonstration(s)**, which must reside on the **Pareto frontier**, **optimal**.

Easy: Optimal demonstrations



Given **cost features** f_1, f_2, \dots , learn weights **w** that make **human demonstration(s)**, which must reside on the **Pareto frontier**, **optimal**.

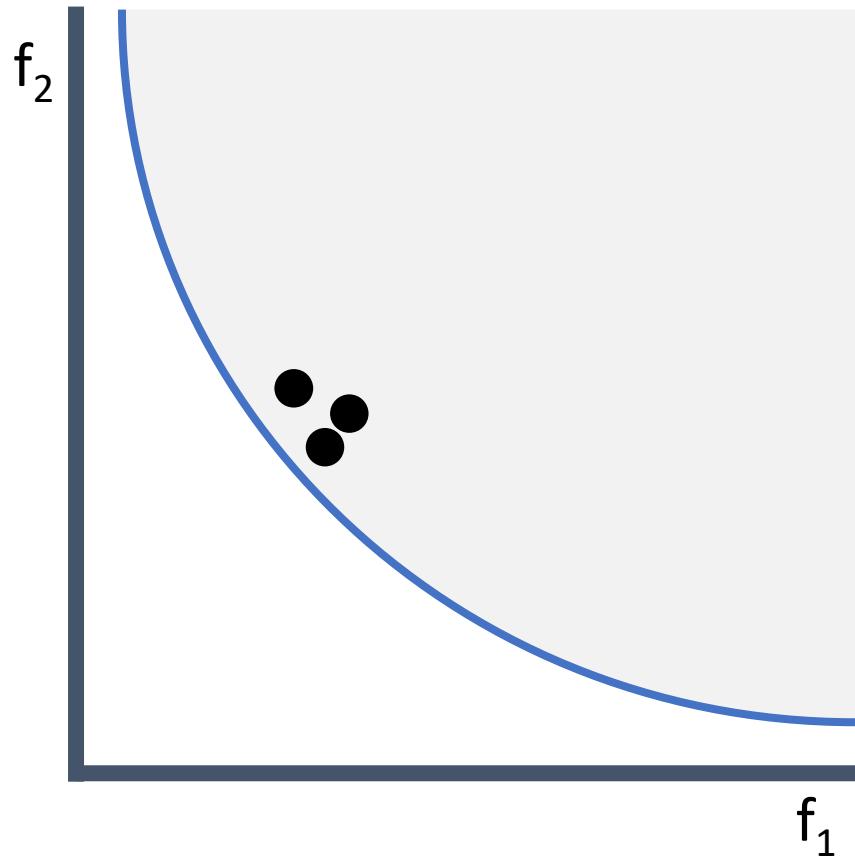
Easy: Optimal demonstrations



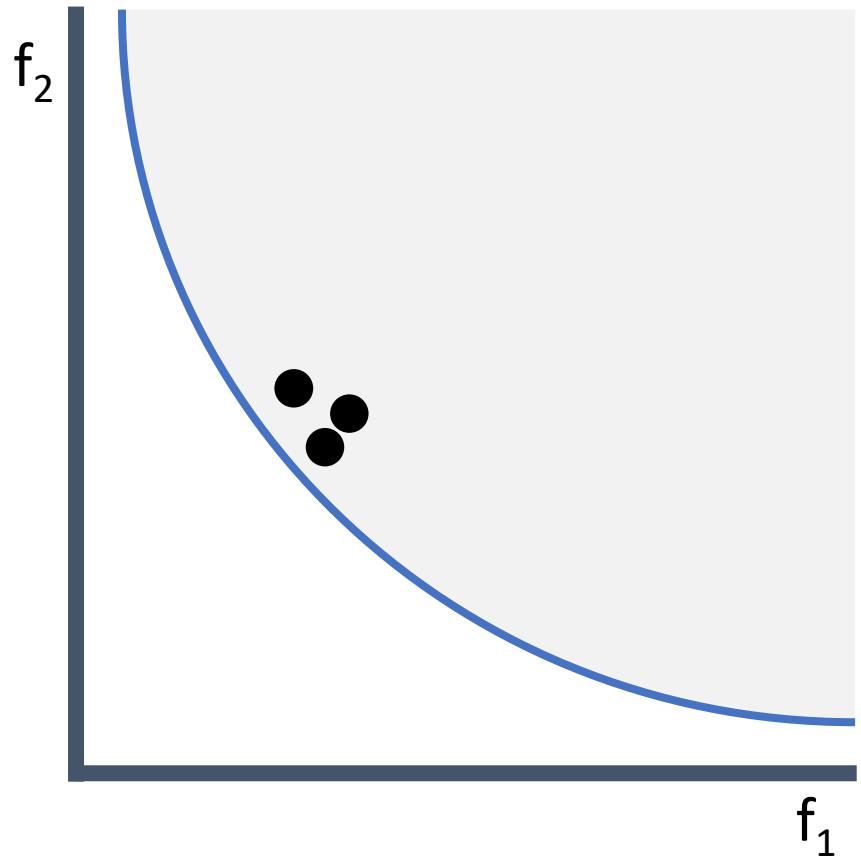
Given **cost features** f_1, f_2, \dots , learn weights **w** that make **human demonstration(s)**, which must reside on the **Pareto frontier**, **optimal**.

Degenerate solutions (**w=0**) exist, but can be avoided (Ng & Russell 2000; Ratliff, Bagnell, Zinkevich 2006)

Harder: Suboptimal demonstrations

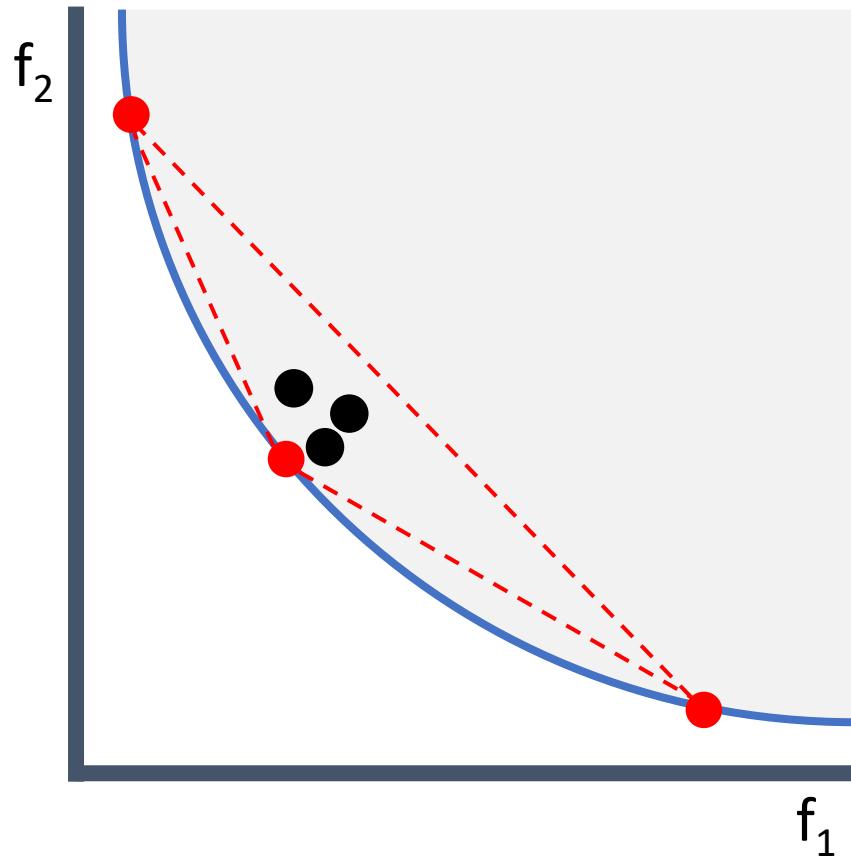


Harder: Suboptimal demonstrations



Feature Matching (Abbeel & Ng 2004): Matching expected features guarantees equal expected cost/reward (assuming linearity).

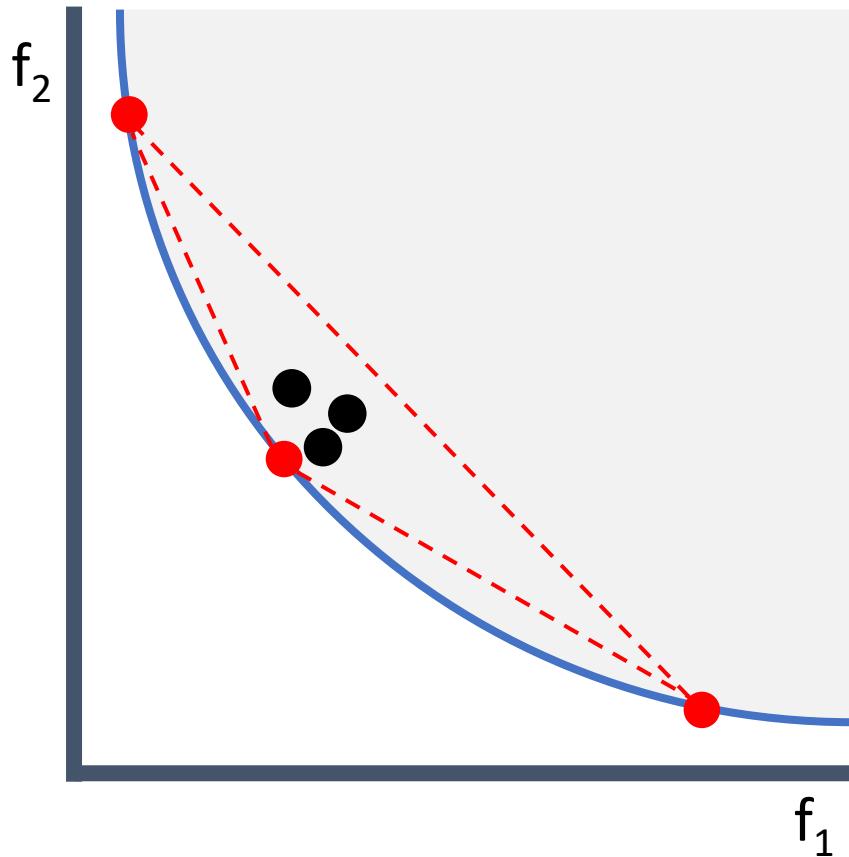
Harder: Suboptimal demonstrations



Feature Matching (Abbeel & Ng 2004): Matching expected features guarantees equal expected cost/reward (assuming linearity).

Approach: Mix optimal policies to match features.

Harder: Suboptimal demonstrations

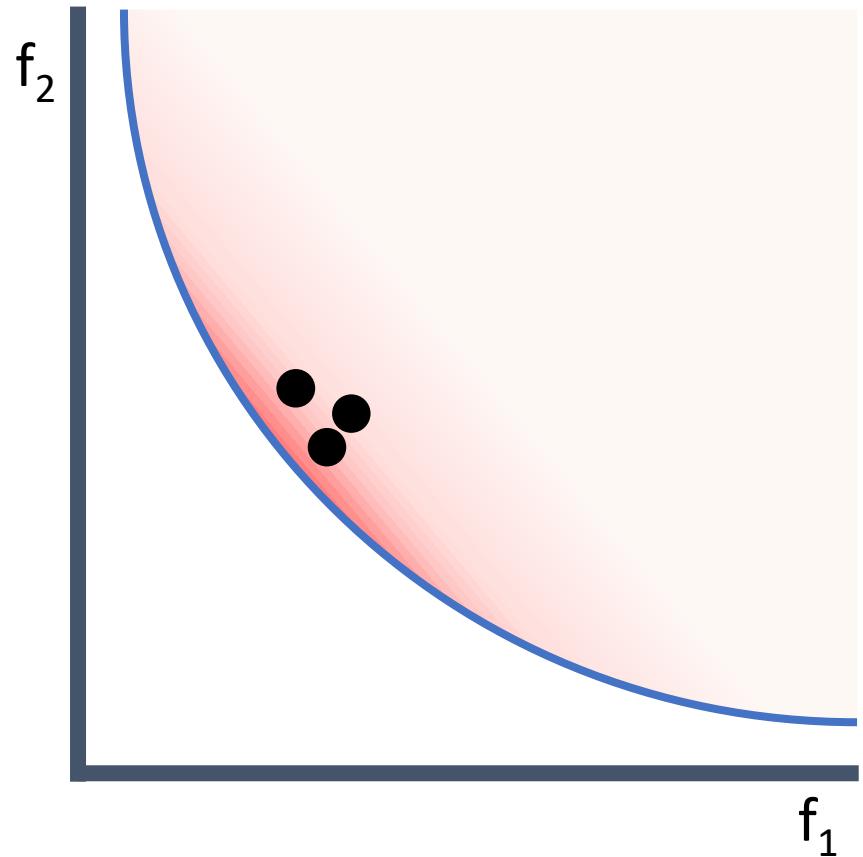


Feature Matching (Abbeel & Ng 2004): Matching expected features guarantees equal expected cost/reward (assuming linearity).

Approach: Mix optimal policies to match features.

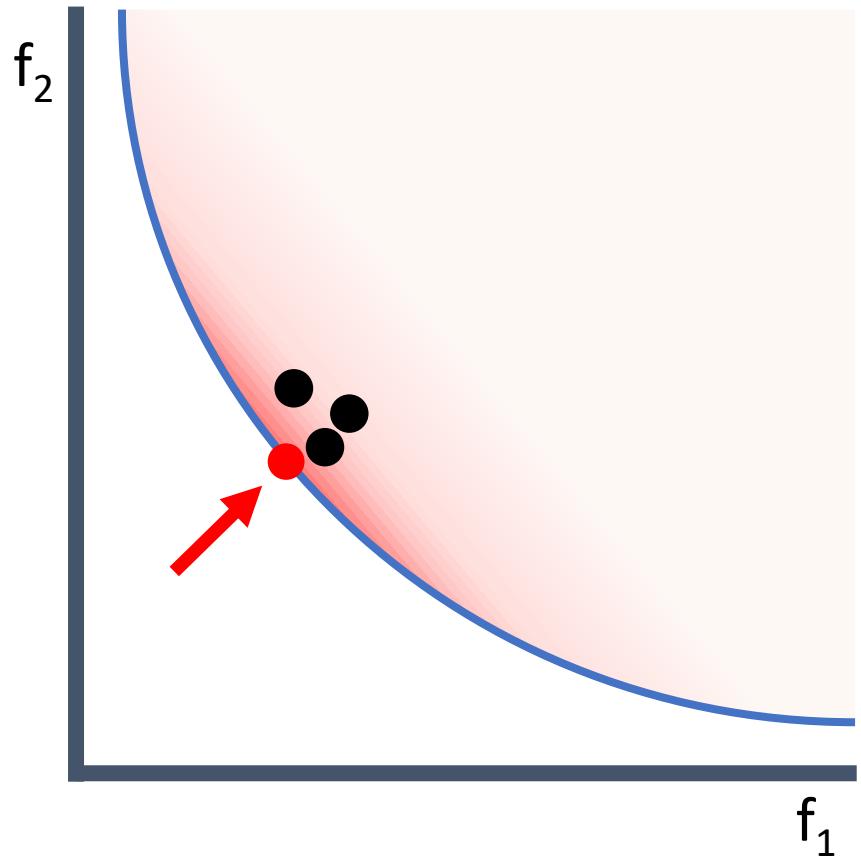
Limitations: Many solutions exist; which policy to deploy?

Harder: Suboptimal demonstrations



MaxEnt IRL (Ziebart et al. 2008):
Demonstrations are noisy with
probability $\propto e^{-\mathbf{w} \cdot \mathbf{f}}$

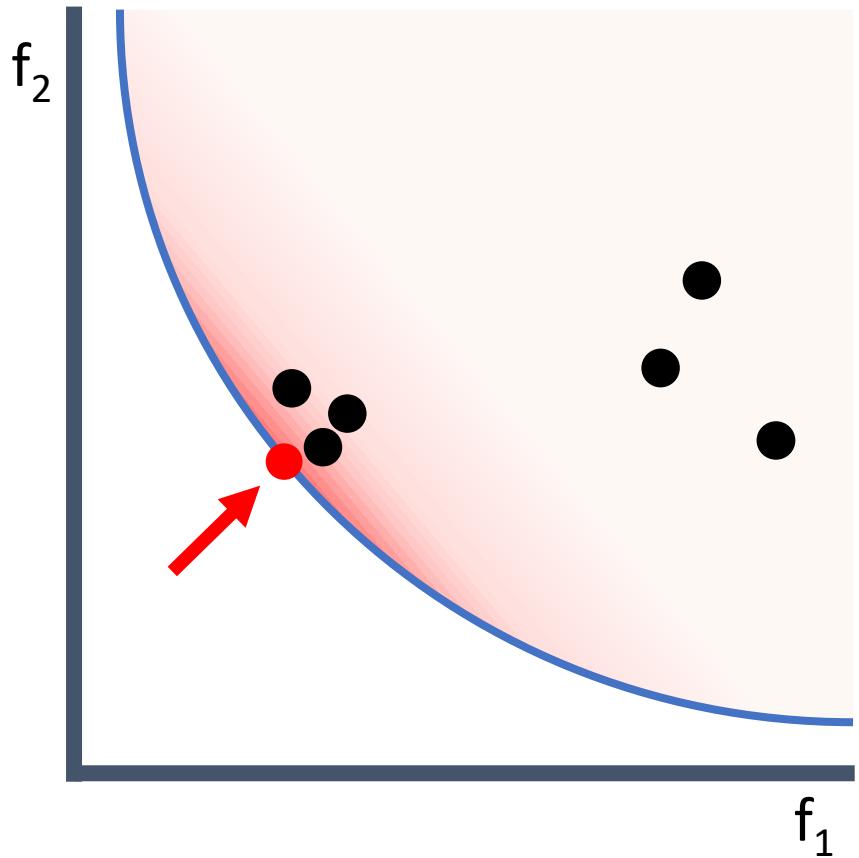
Harder: Suboptimal demonstrations



MaxEnt IRL (Ziebart et al. 2008):
Demonstrations are noisy with
probability $\propto e^{-\mathbf{w} \cdot \mathbf{f}}$

Apprenticeship learning:
estimate \mathbf{w} , employ distribution
mode (i.e., minimize $\mathbf{w} \cdot \mathbf{f}$).

Harder: Suboptimal demonstrations

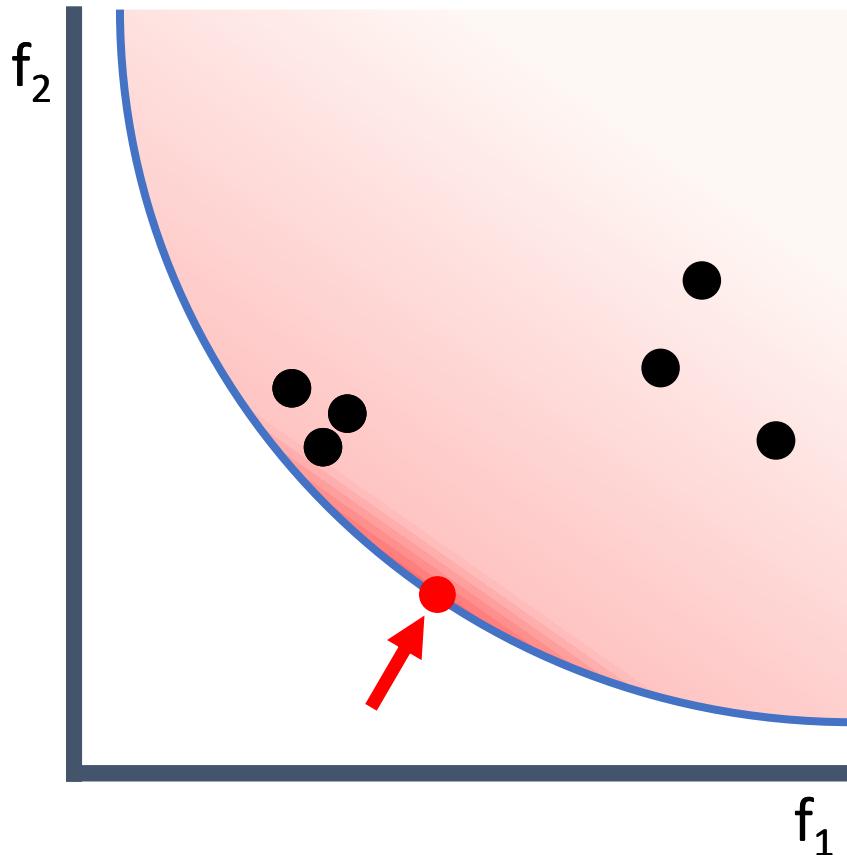


MaxEnt IRL (Ziebart et al. 2008):
Demonstrations are noisy with
probability $\propto e^{-\mathbf{w} \cdot \mathbf{f}}$

Apprenticeship learning:
estimate \mathbf{w} , employ distribution
mode (i.e., minimize $\mathbf{w} \cdot \mathbf{f}$).

Outliers violating noise model
can significantly shift the mode.

Harder: Suboptimal demonstrations

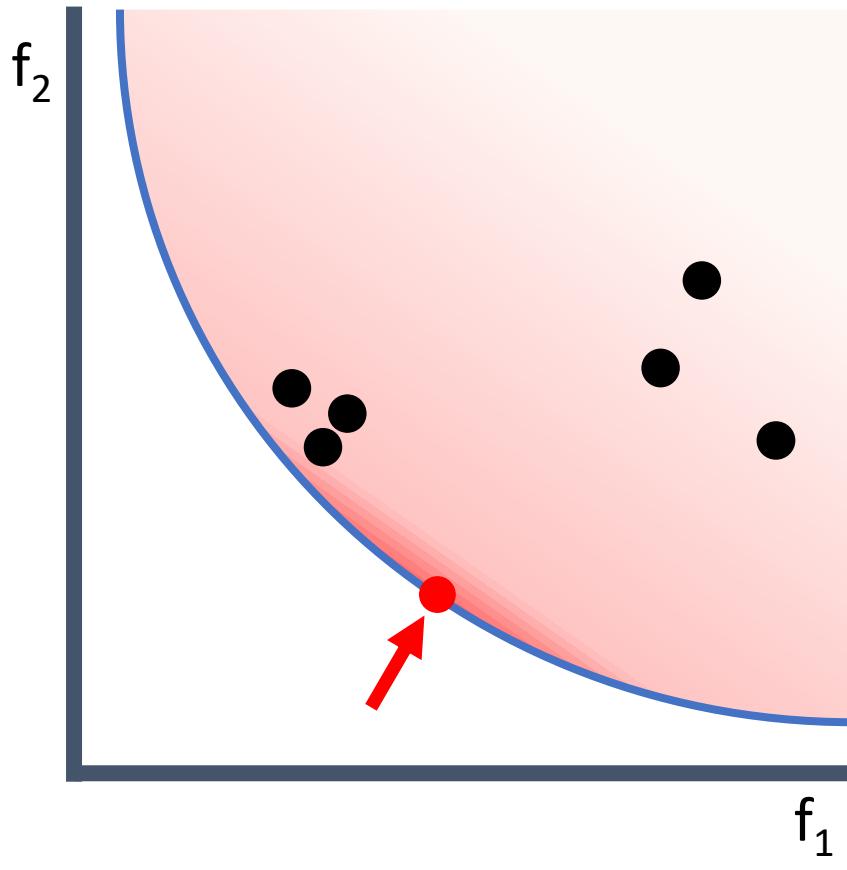


MaxEnt IRL (Ziebart et al. 2008):
Demonstrations are noisy with
probability $\propto e^{-\mathbf{w} \cdot \mathbf{f}}$

Apprenticeship learning:
estimate \mathbf{w} , employ distribution
mode (i.e., minimize $\mathbf{w} \cdot \mathbf{f}$).

Outliers violating noise model
can significantly shift the mode.

Harder: Suboptimal demonstrations



MaxEnt IRL (Ziebart et al. 2008):
Demonstrations are noisy with
probability $\propto e^{-\mathbf{w} \cdot \mathbf{f}}$

Apprenticeship learning:
estimate \mathbf{w} , employ distribution
mode (i.e., minimize $\mathbf{w} \cdot \mathbf{f}$).

Outliers violating noise model
can significantly shift the mode.

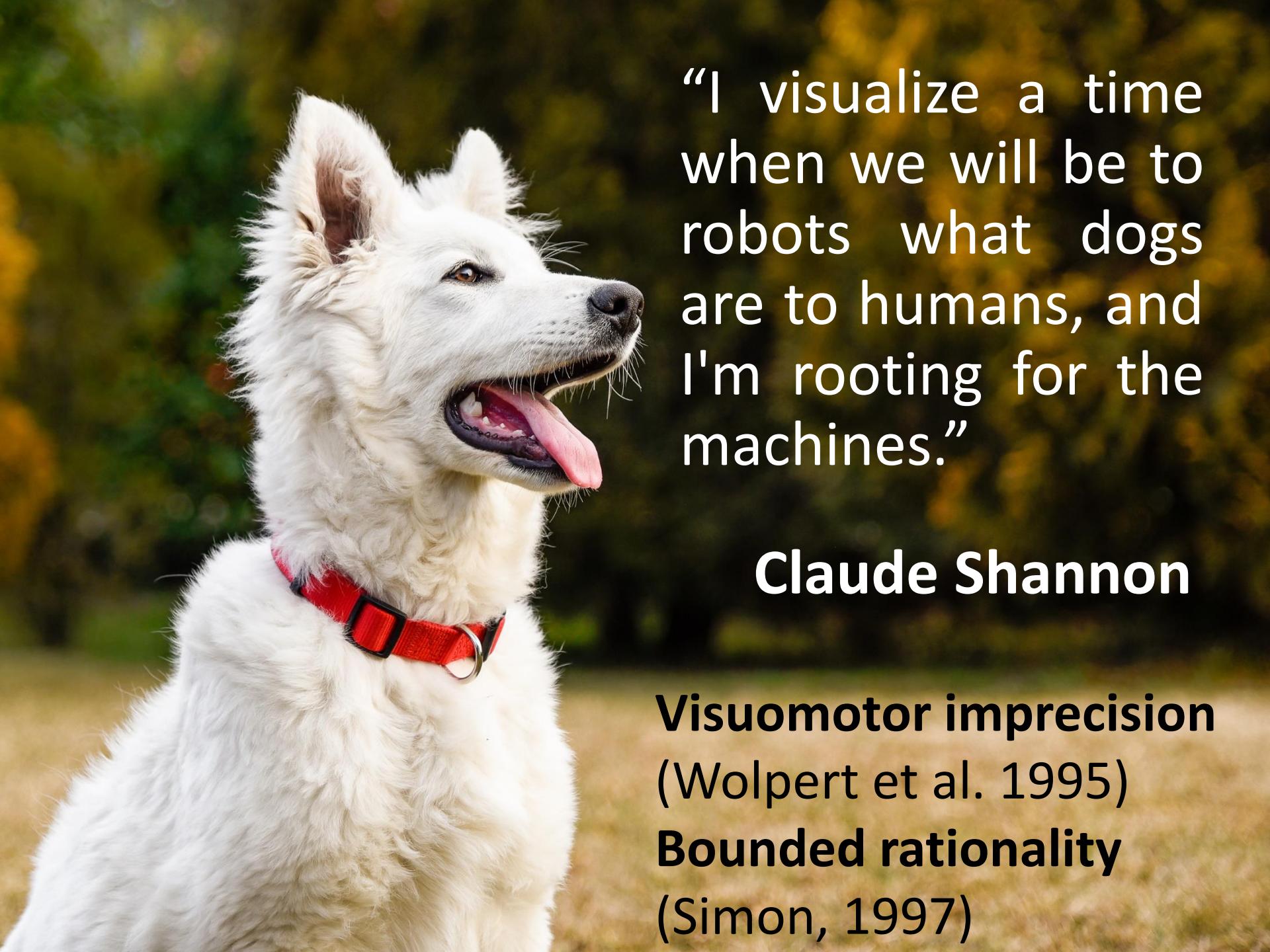
Substantial amounts of related
work seek to “ignore” outliers.

Rankings/Confidences (Ibarz et al., 2018; Brown et al., 2019; Brown et al., 2020, Novoseller et al., 2020; Zhang et al., 2021; Myers et al., 2021; Tangkaratt et al., 2020; 2021; Wang et al., 2021a; Wang et al. 2021b; Bıyık et al., 2022)
Noise models (Evans et al., 2016; Majumdar et al., 2017; Reddy et al., 2018; Kwon et al., 2020; Zhi-Xuan et al., 2020)

A close-up photograph of a white dog, possibly a Samoyed or similar breed, looking towards the right. The dog has a thick, white coat and is wearing a red and black collar. Its tongue is slightly out, suggesting it might be panting or happy. The background is a blurred, green and yellow autumnal landscape.

“I visualize a time
when we will be to
robots what dogs
are to humans, and
I'm rooting for the
machines.”

Claude Shannon

A close-up photograph of a white dog, possibly a Samoyed or similar breed, looking towards the right. The dog has a thick, white coat and is wearing a red and black collar. The background is a blurred green and yellow, suggesting an outdoor setting like a park.

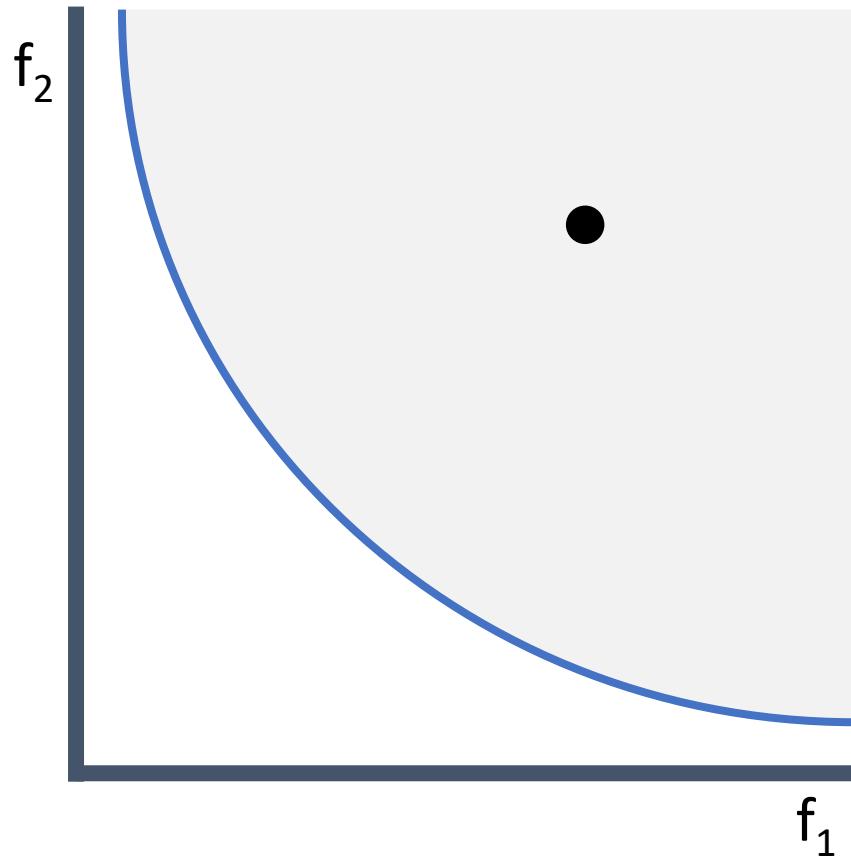
“I visualize a time
when we will be to
robots what dogs
are to humans, and
I'm rooting for the
machines.”

Claude Shannon

Visuomotor imprecision
(Wolpert et al. 1995)

Bounded rationality
(Simon, 1997)

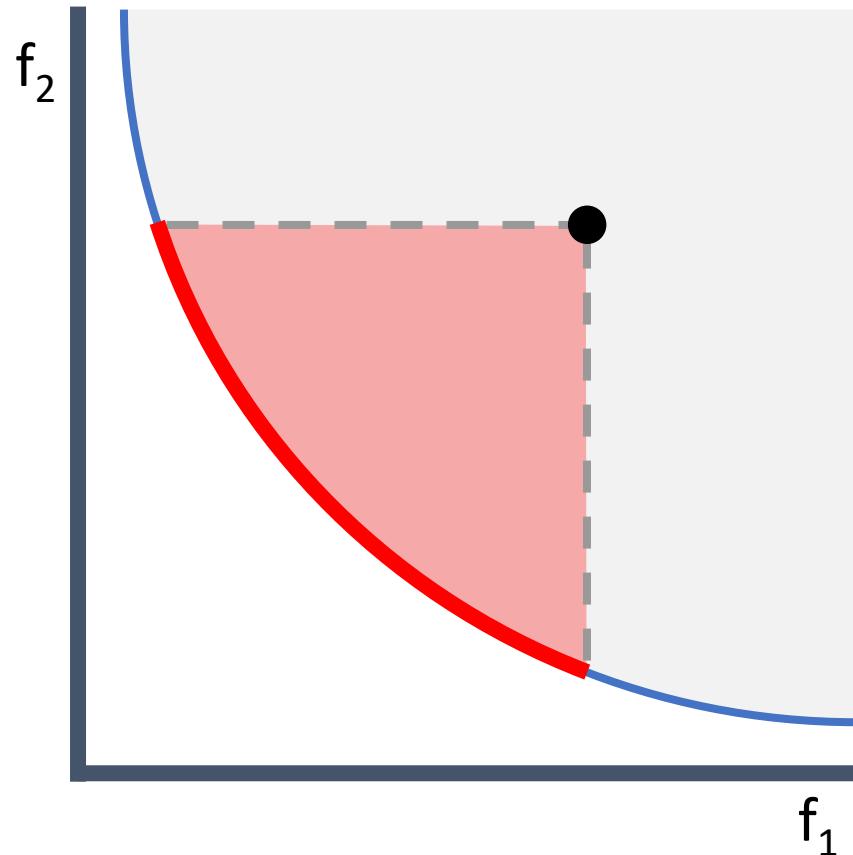
Defining Superhuman Behavior



cost features f_1, f_2, \dots
human demonstrations

Pareto frontier

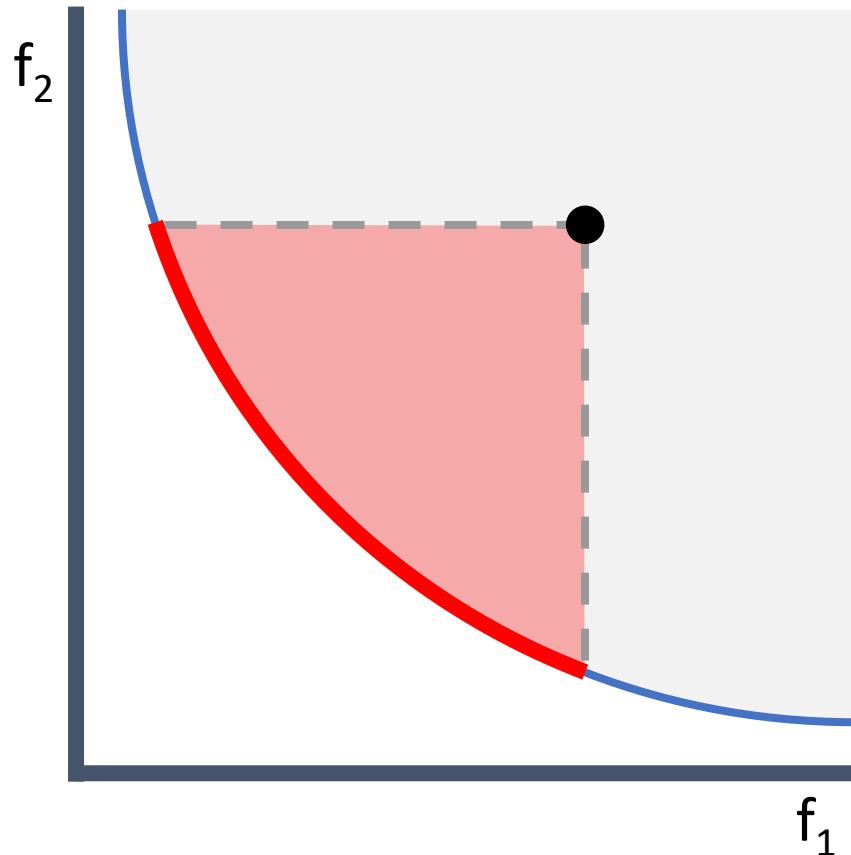
Defining Superhuman Behavior



A **policy** is **superhuman** if it has smaller **cost features** f_1, f_2, \dots for all **human demonstrations**

Pareto frontier

Defining Superhuman Behavior



A **policy** is **superhuman** if it has smaller **cost features** f_1, f_2, \dots for all **human demonstrations**

Guarantees lower cost than demonstration costs for family of additive cost functions

Pareto frontier

Defining Superhuman Behavior

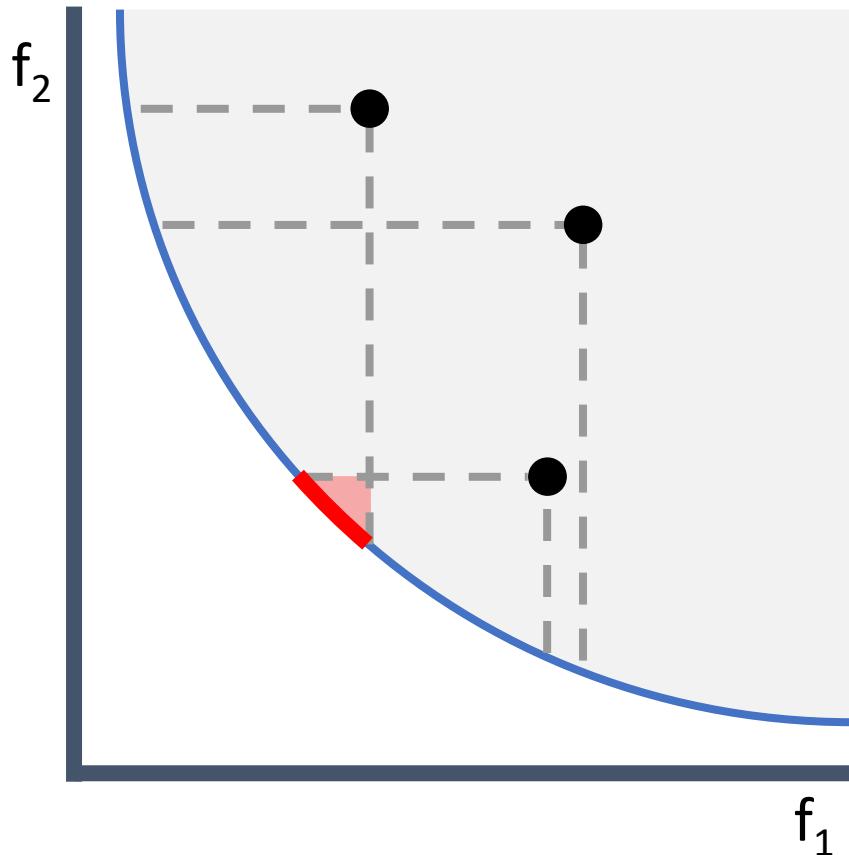


A **policy** is **superhuman** if it has smaller **cost features** f_1, f_2, \dots for all **human demonstrations**

Guarantees lower cost than demonstration costs for family of additive cost functions

Set of **superhuman policies** on the **Pareto frontier** shrinks as demonstrations grow

Defining Superhuman Behavior

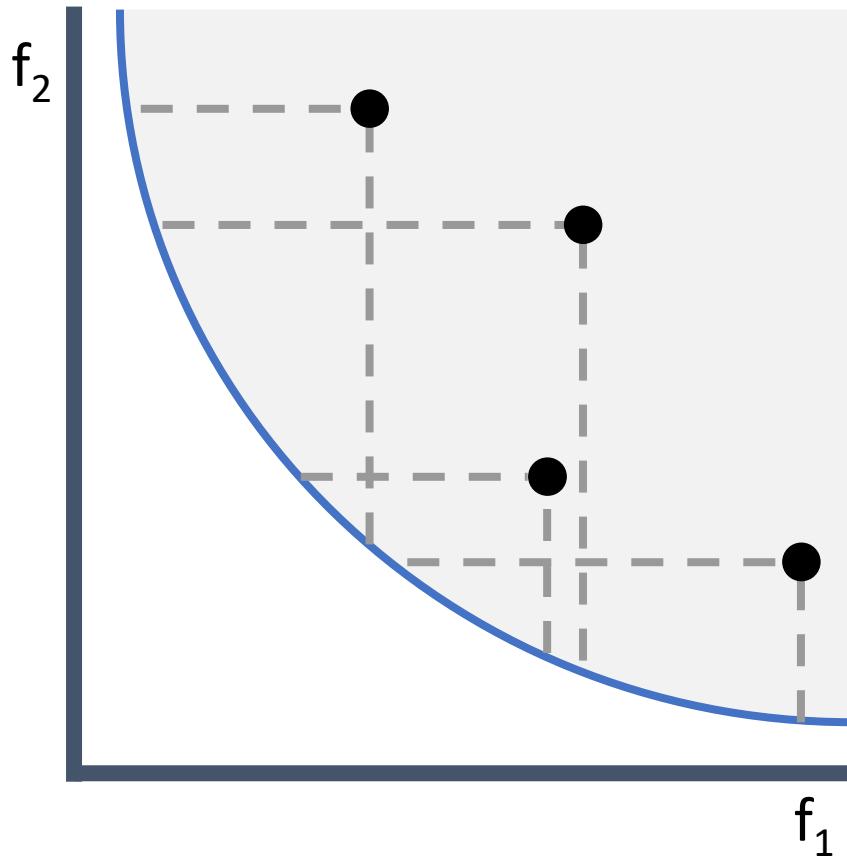


A **policy** is **superhuman** if it has smaller **cost features** f_1, f_2, \dots for all **human demonstrations**

Guarantees lower cost than demonstration costs for family of additive cost functions

Set of **superhuman policies** on the **Pareto frontier** shrinks as demonstrations grow

Defining Superhuman Behavior



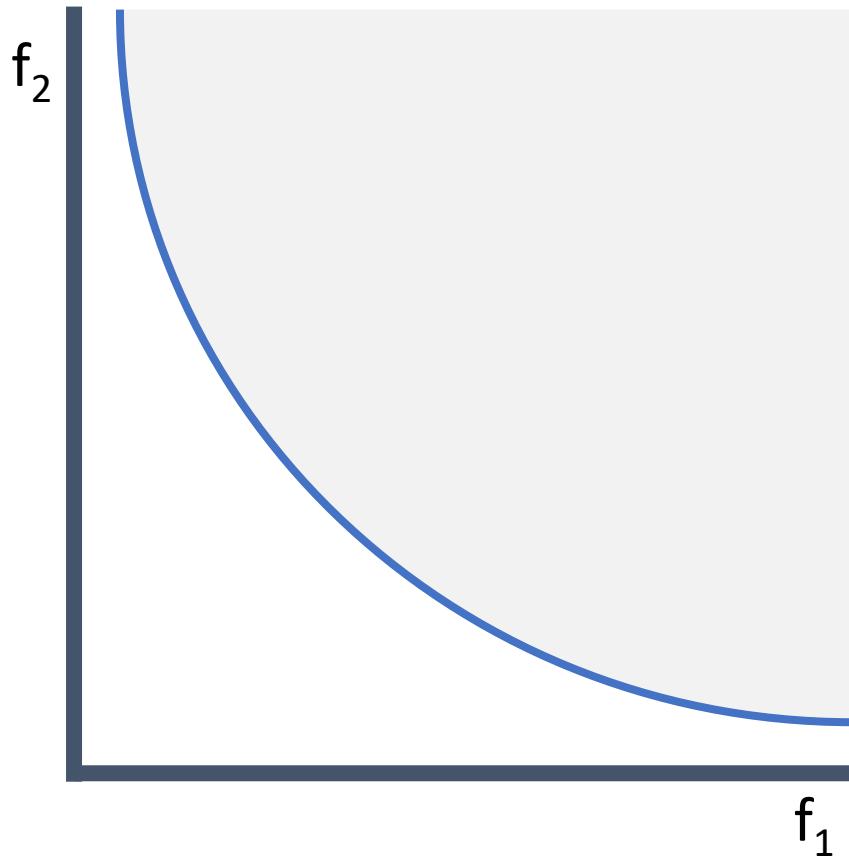
A **policy** is **superhuman** if it has smaller **cost features** f_1, f_2, \dots for all **human demonstrations**

Guarantees lower cost than demonstration costs for family of additive cost functions

Set of **superhuman policies** on the **Pareto frontier** shrinks as demonstrations grow

Can become empty!

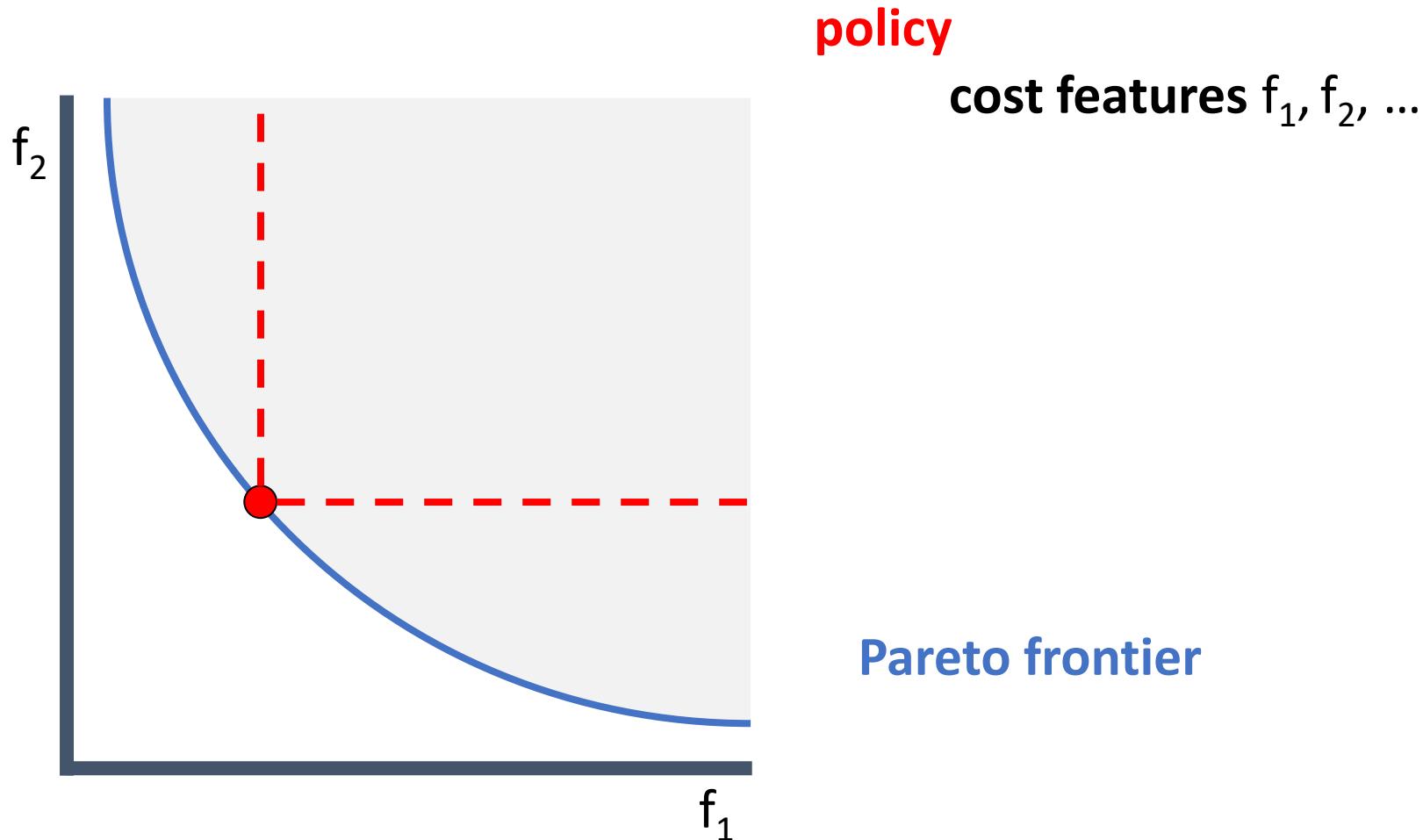
Superhuman Percentile & Subdominance



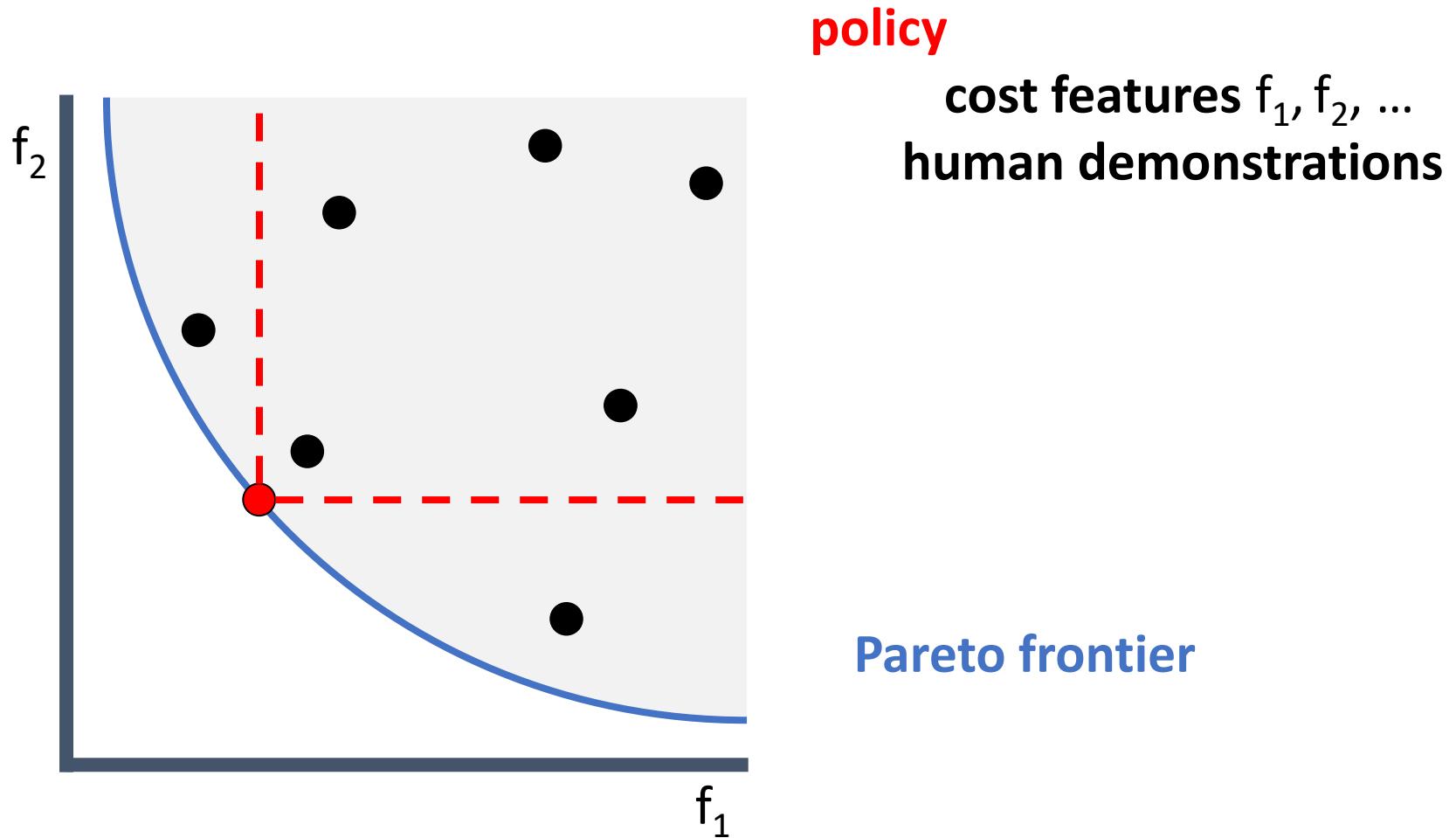
cost features f_1, f_2, \dots

Pareto frontier

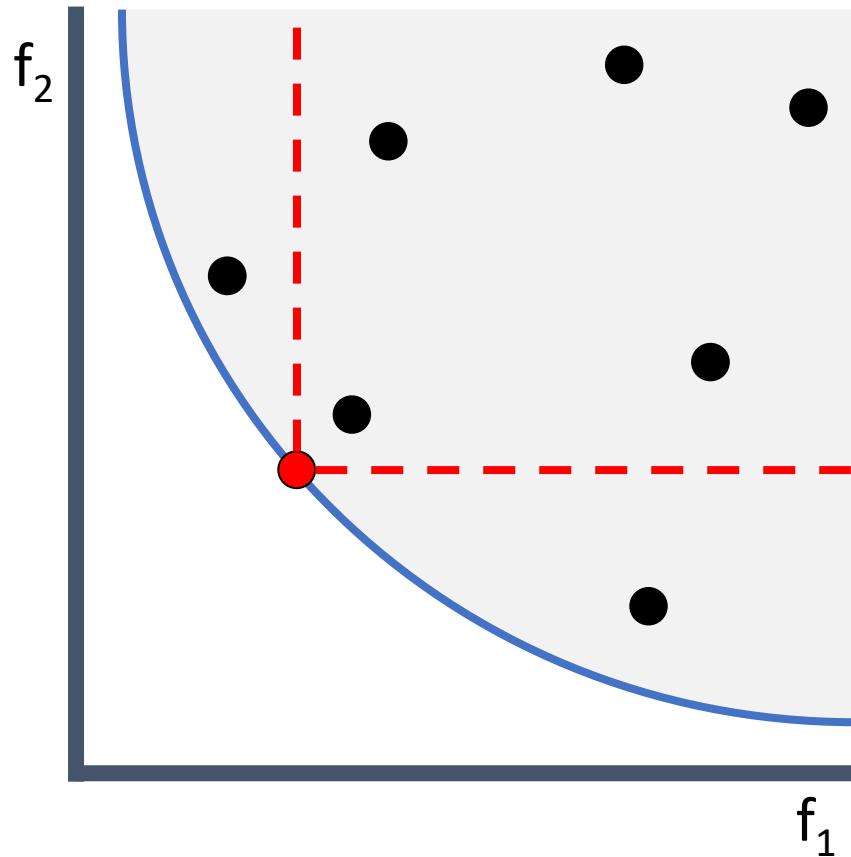
Superhuman Percentile & Subdominance



Superhuman Percentile & Subdominance



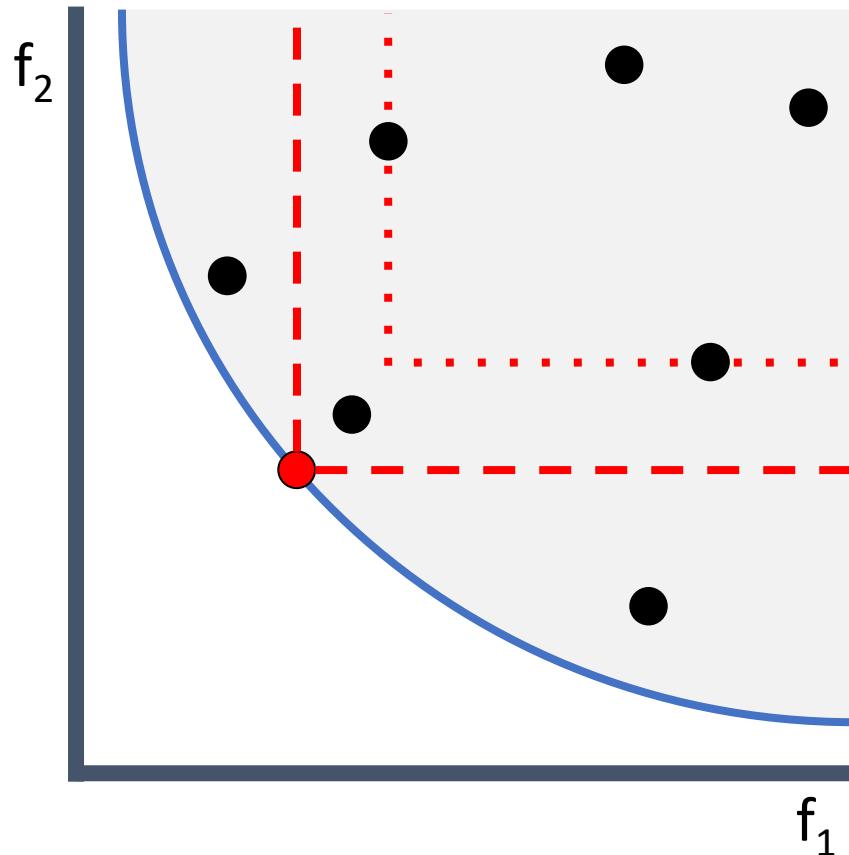
Superhuman Percentile & Subdominance



A **policy** is γ -superhuman if it has smaller **cost features** f_1, f_2, \dots than $\gamma\%$ of **human demonstrations**

Pareto frontier

Superhuman Percentile & Subdominance

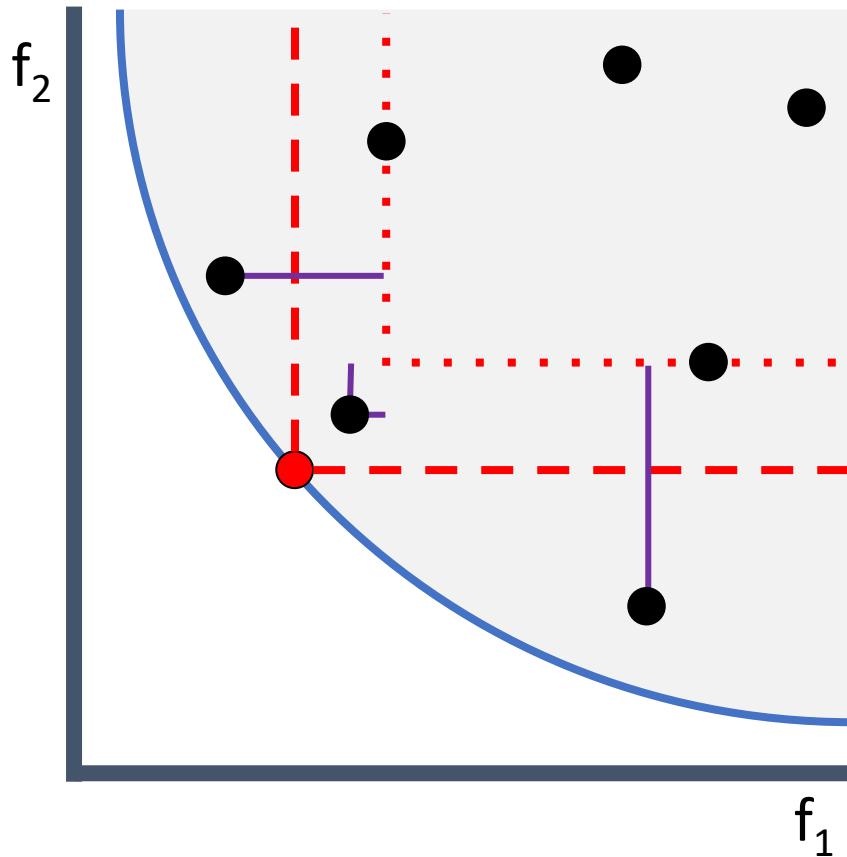


A **policy** is γ -superhuman if it has smaller **cost features** f_1, f_2, \dots than $\gamma\%$ of **human demonstrations**

Pareto frontier

margins

Superhuman Percentile & Subdominance

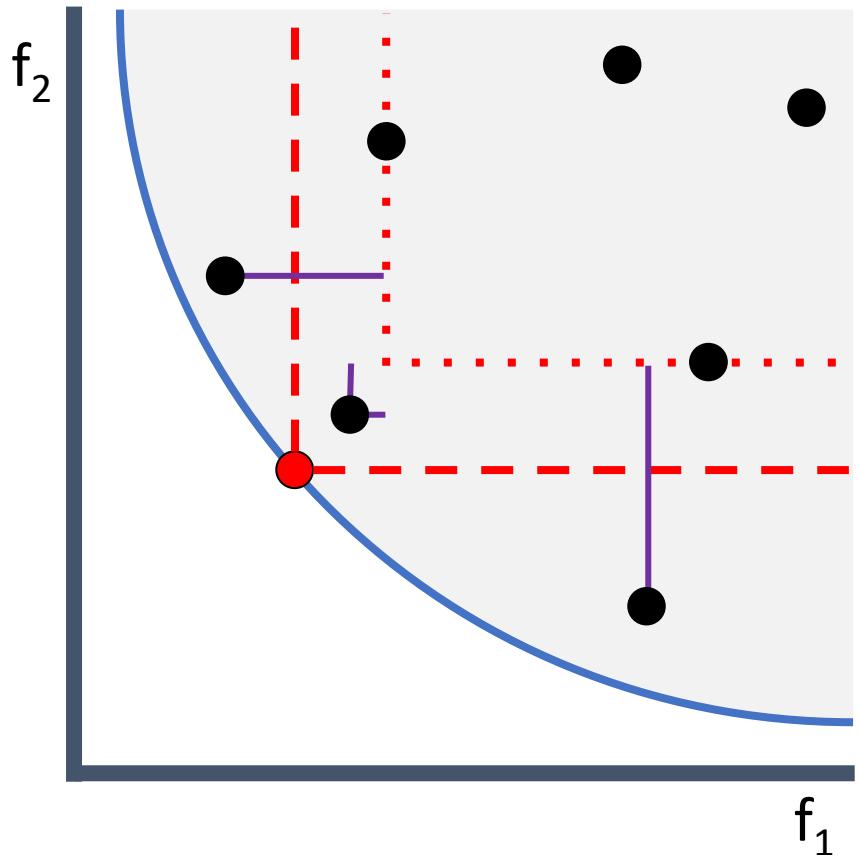


A **policy** is γ -superhuman if it has smaller **cost features** f_1, f_2, \dots than $\gamma\%$ of **human demonstrations**

Subdominance measures how far a policy is from superhuman by some **margins**

Pareto frontier

Superhuman Percentile & Subdominance

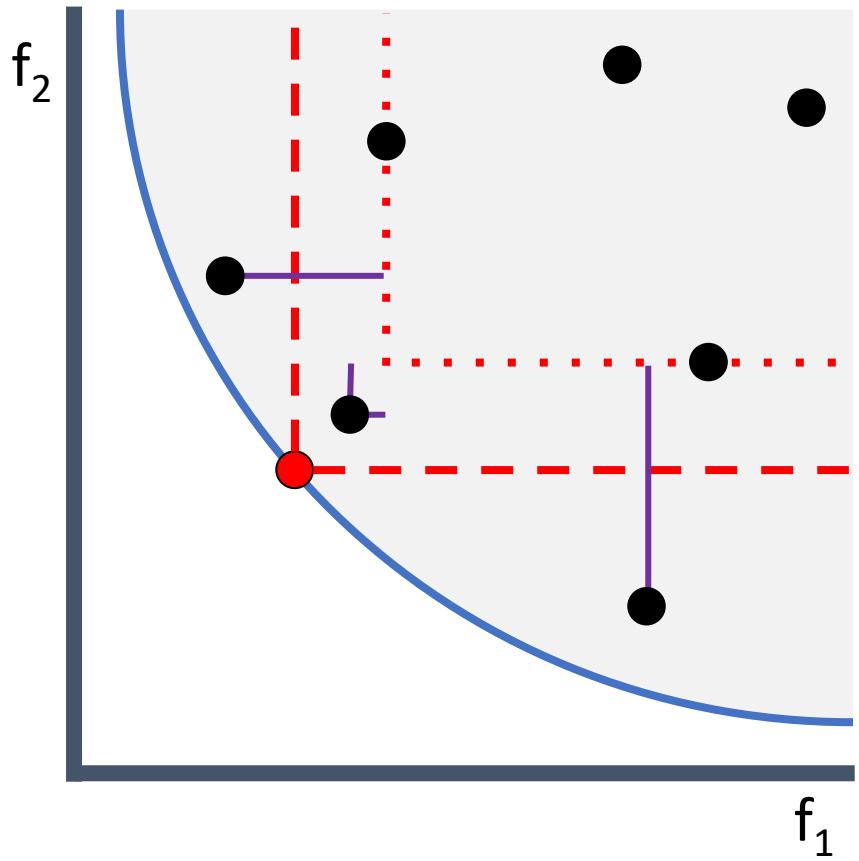


A **policy** is γ -superhuman if it has smaller **cost features** f_1, f_2, \dots than $\gamma\%$ of **human demonstrations**

Subdominance measures how far a policy is from superhuman by some **margins**

Minimum Subdominance Inverse Optimal Control seeks policies on the **Pareto frontier** minimizing this

Superhuman Percentile & Subdominance



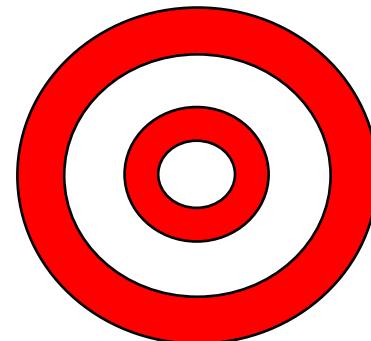
A **policy** is γ -superhuman if it has smaller **cost features** f_1, f_2, \dots than $\gamma\%$ of **human demonstrations**

Subdominance measures how far a policy is from superhuman by some **margins**

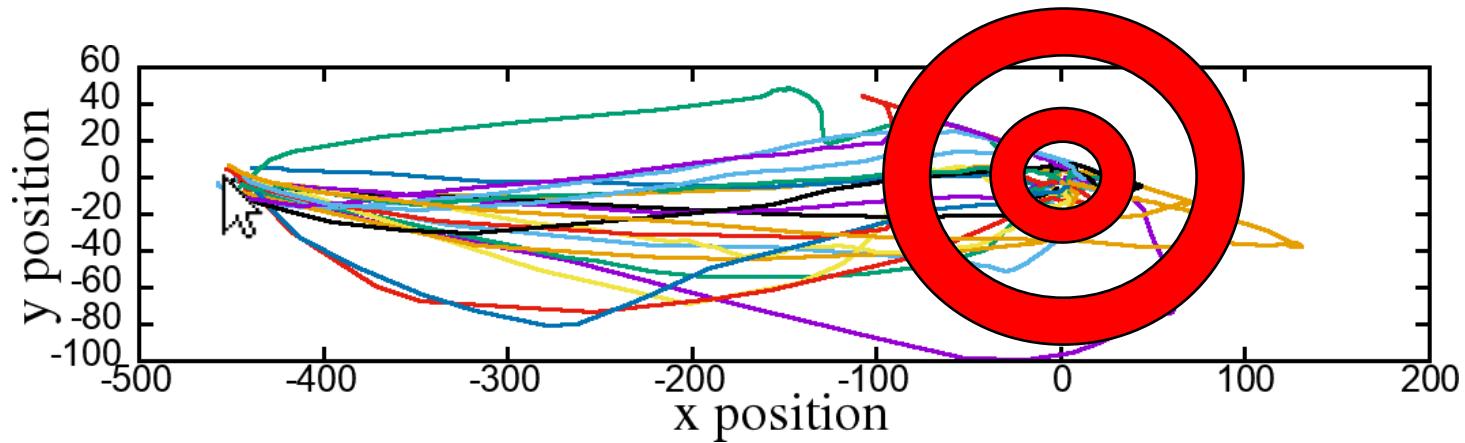
Minimum Subdominance Inverse Optimal Control seeks policies on the **Pareto frontier** minimizing this

Subdominance bounds the **superhuman percentile**

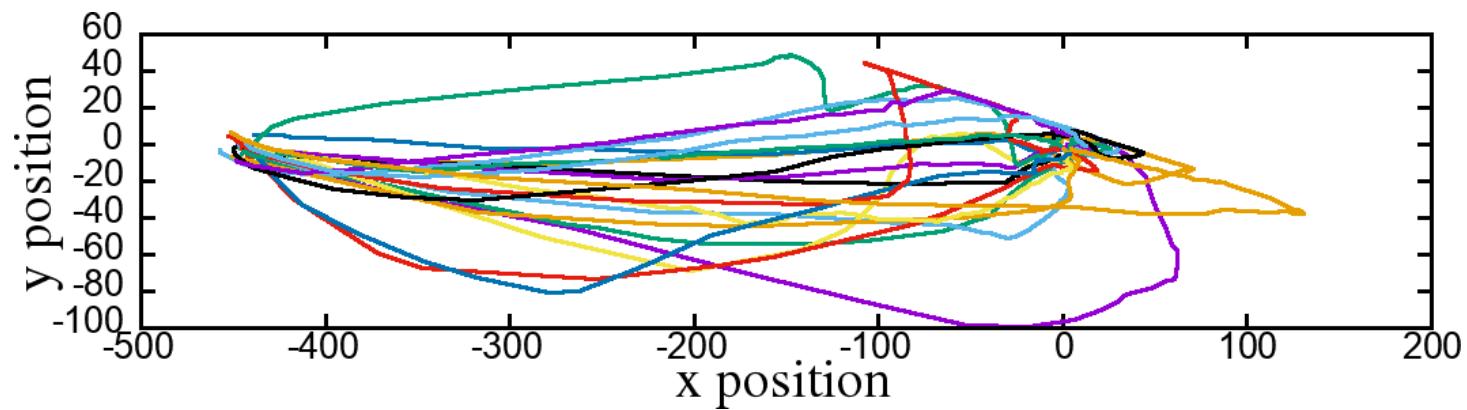
Cursor Pointing Task



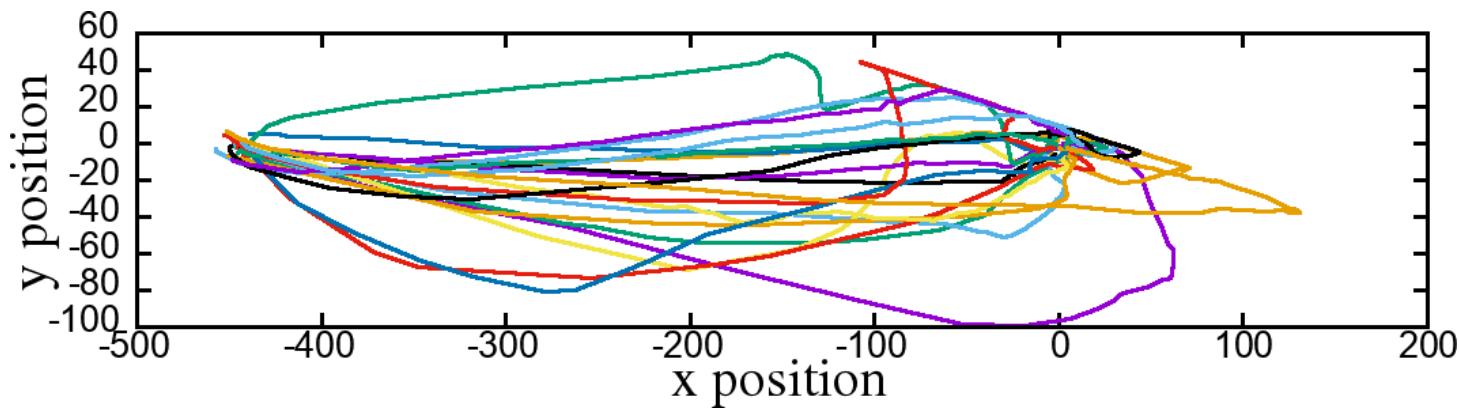
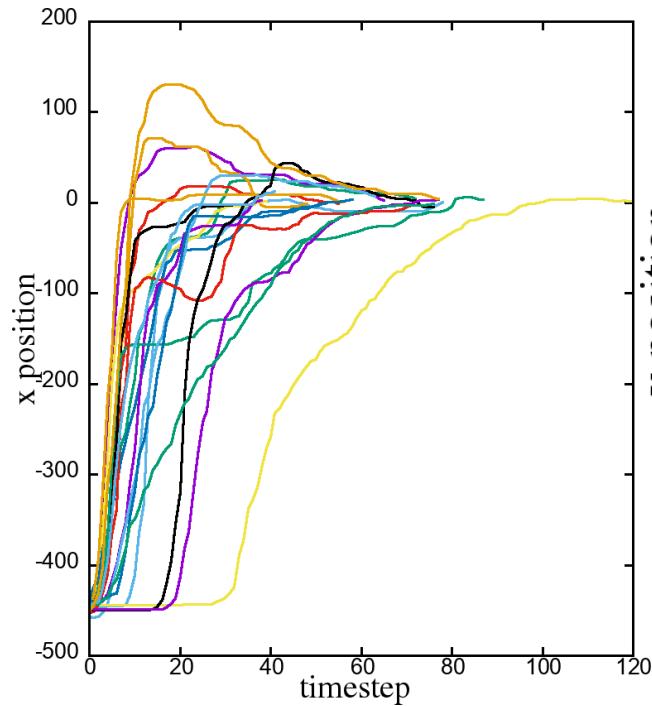
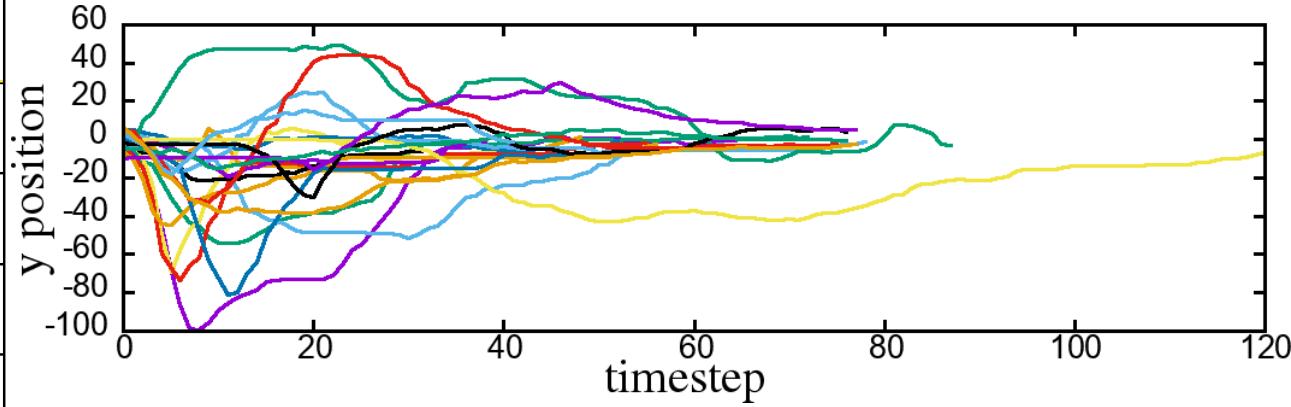
Cursor Pointing Task



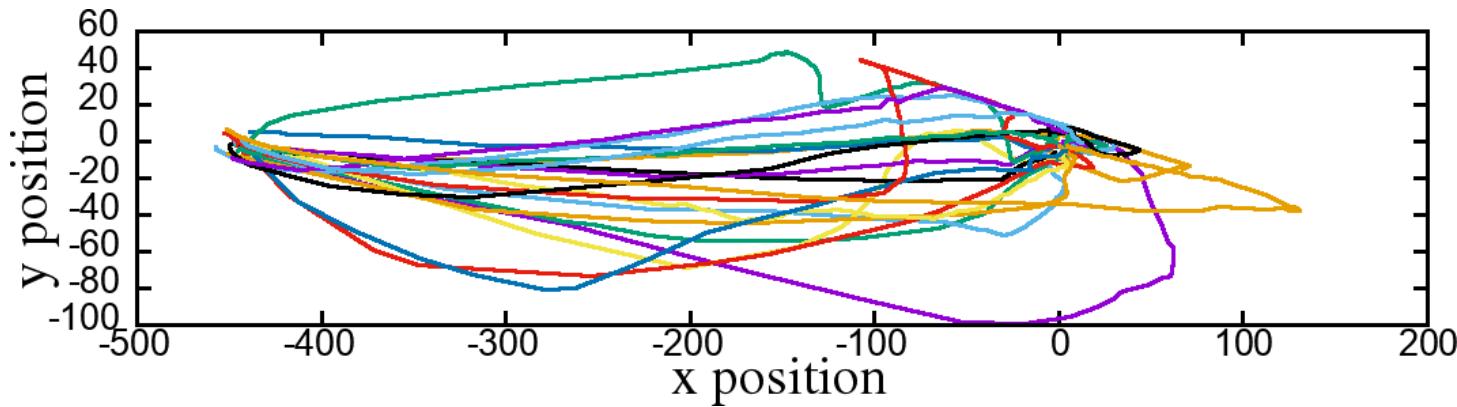
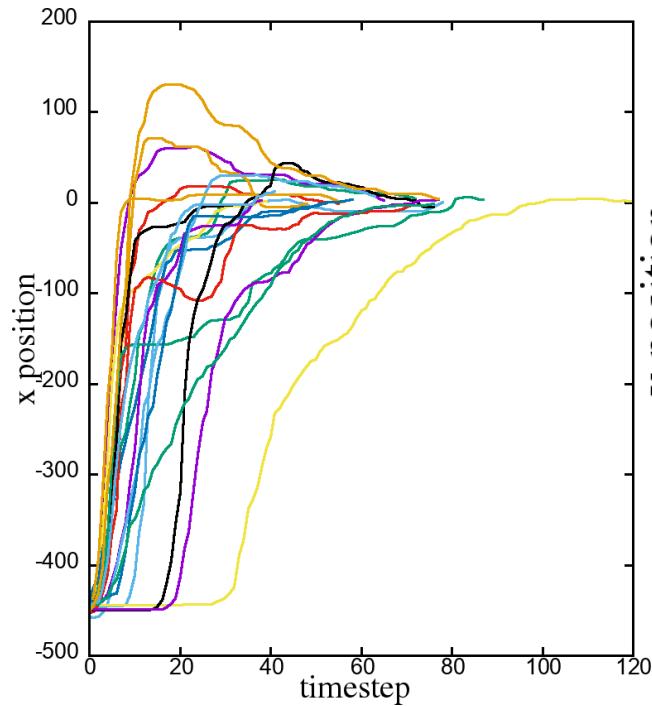
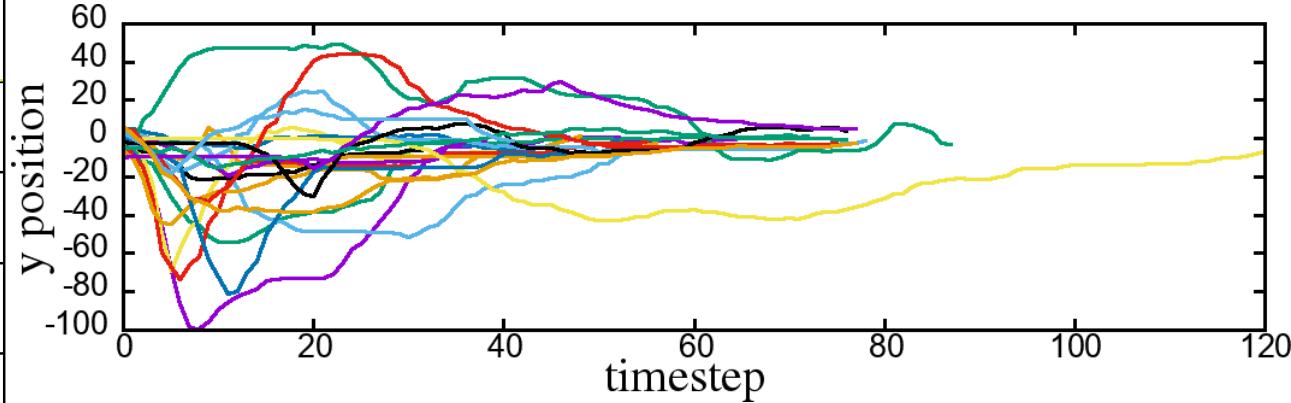
Cursor Pointing Task



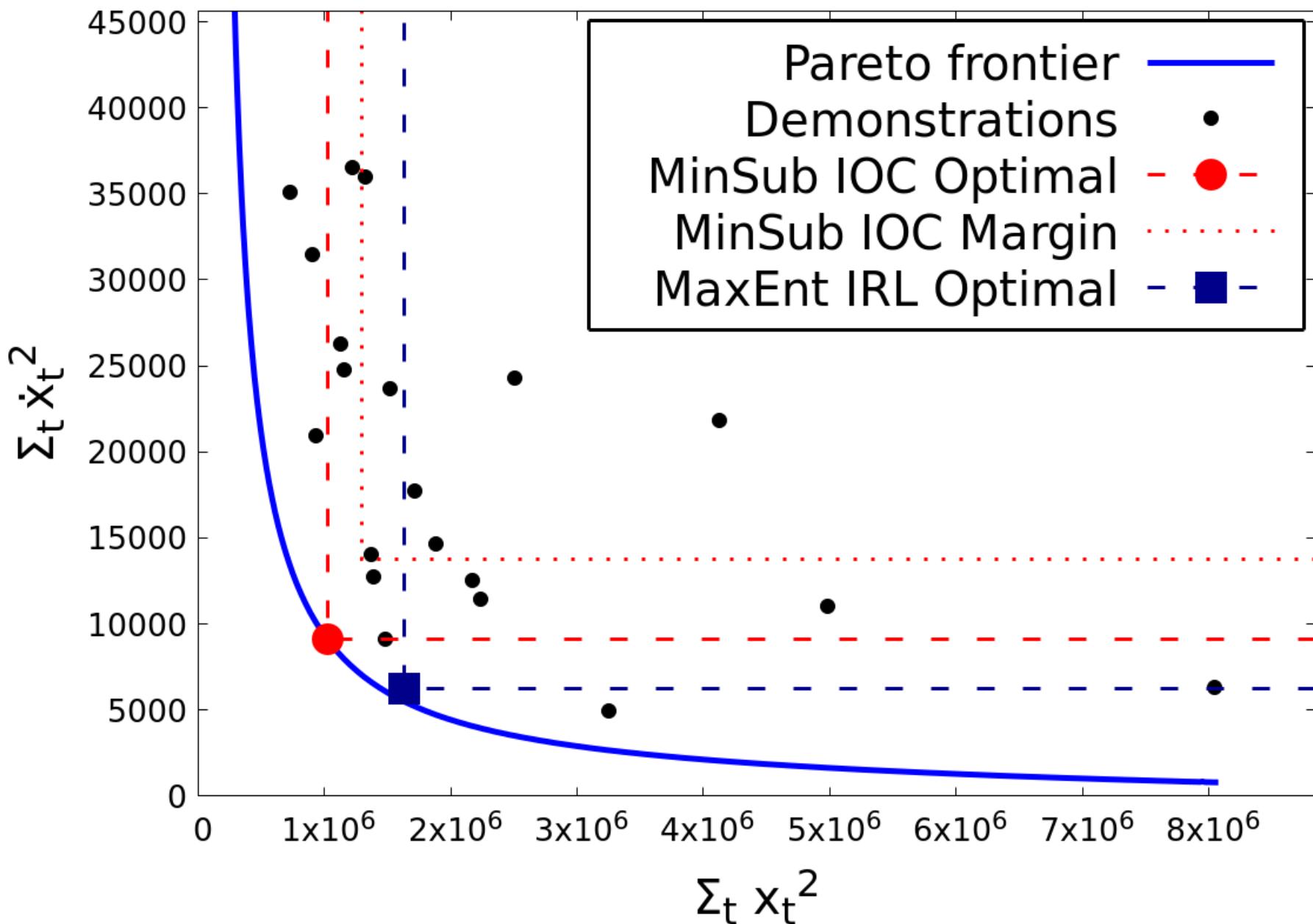
Cursor Pointing Task

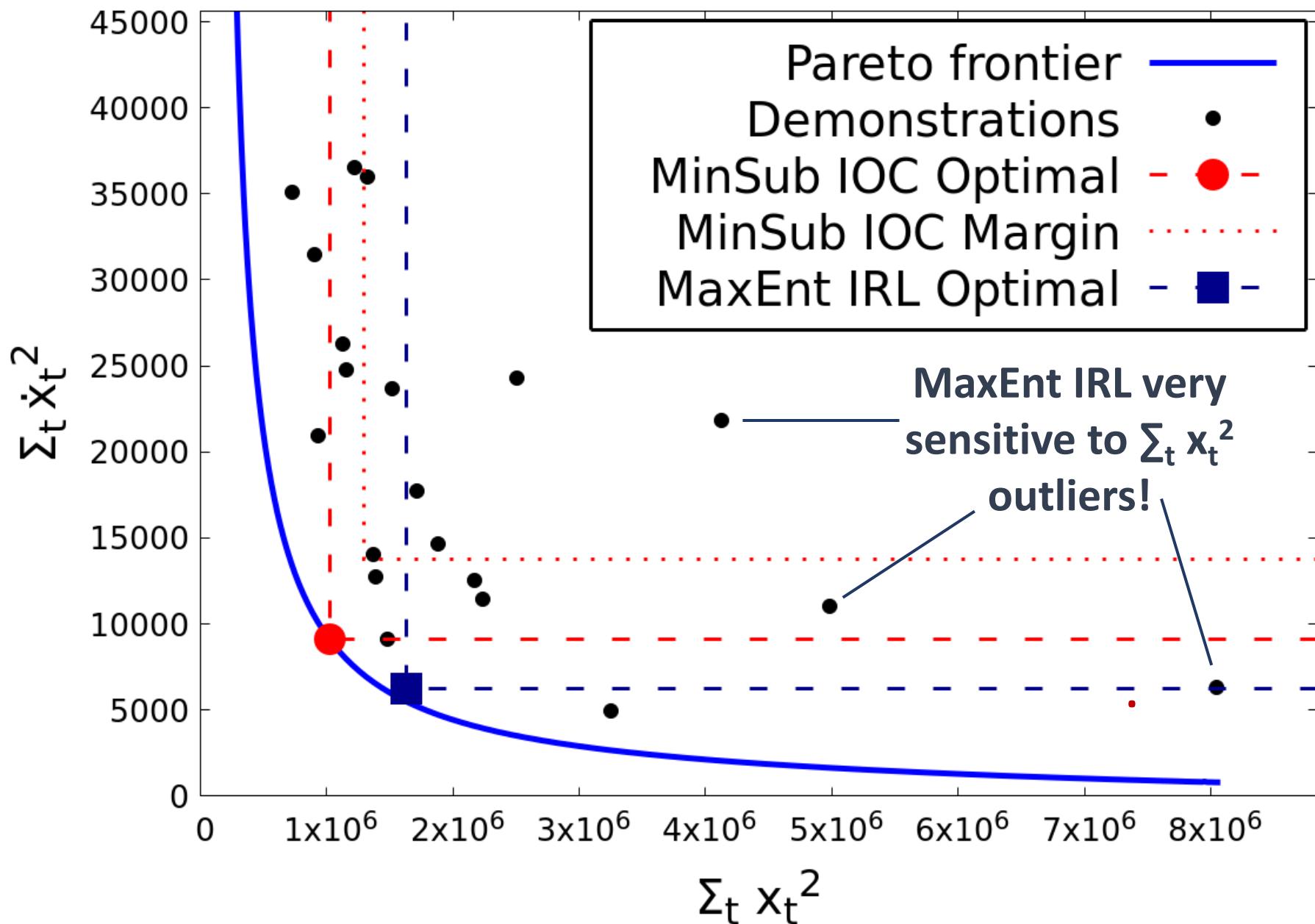


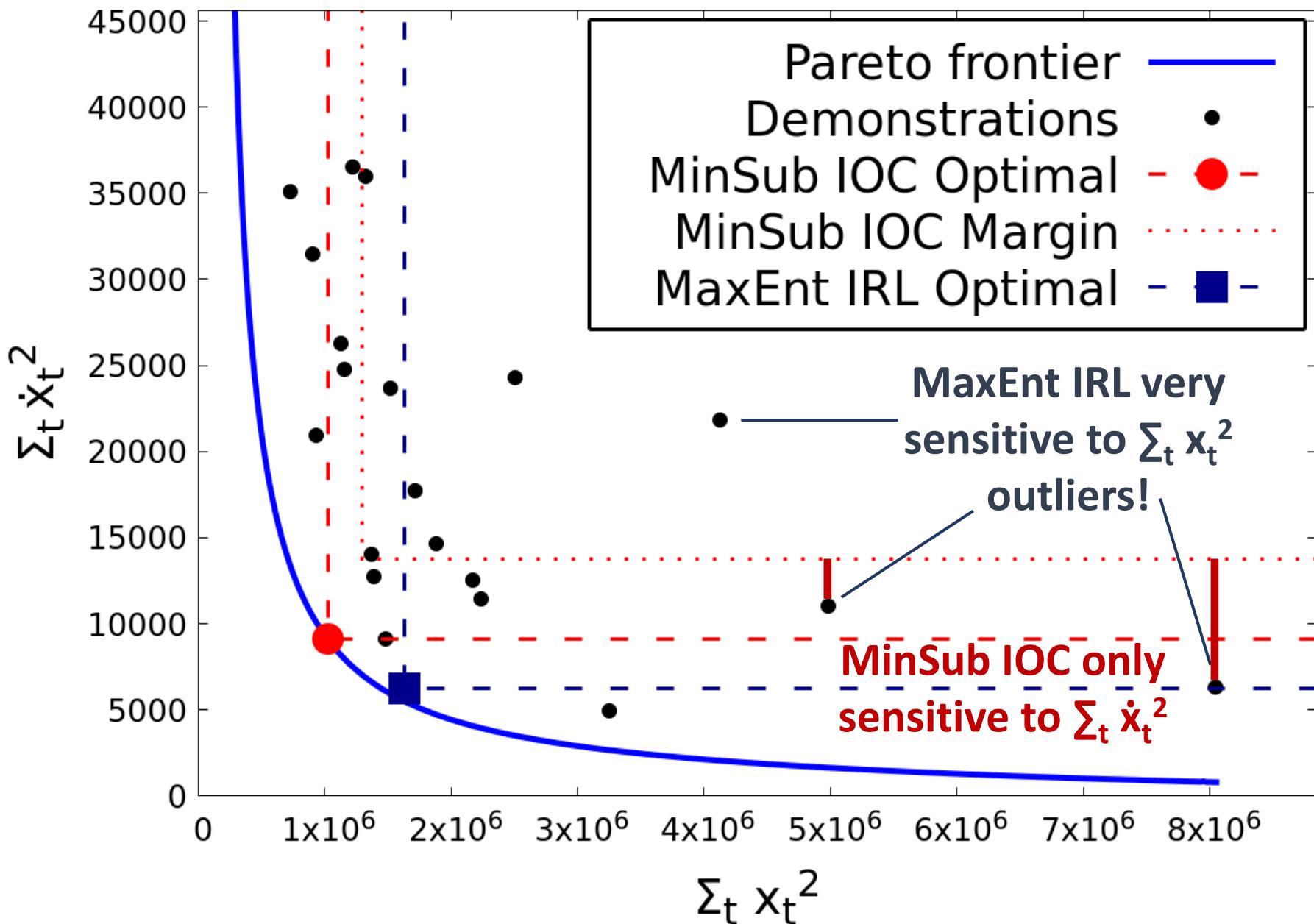
Cursor Pointing Task

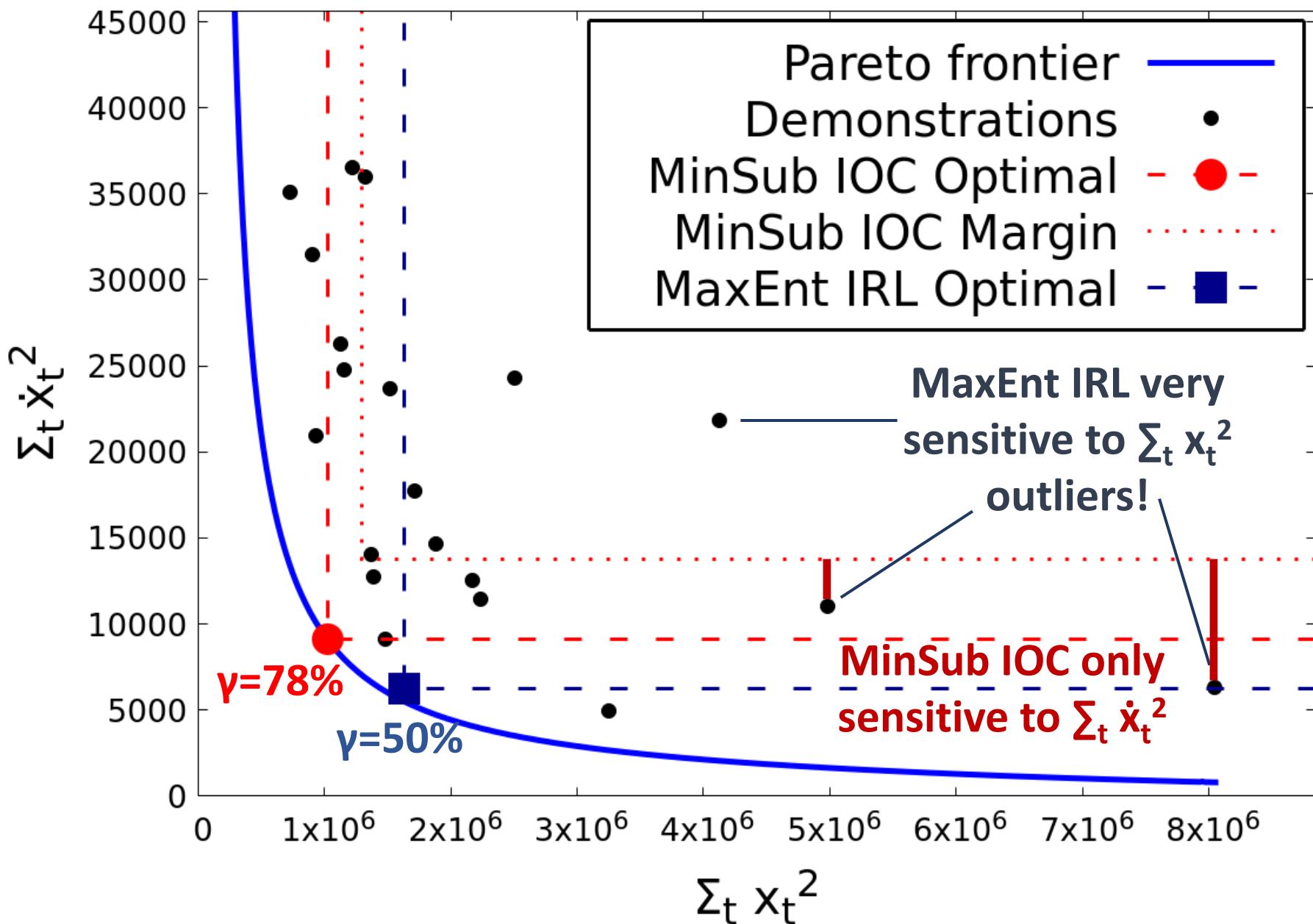


Linear-quadratic regulation formulation:
 $\text{Cost}(s_t) = \alpha_{x,x} x_t^2 + \alpha_{\dot{x},\dot{x}} \dot{x}_t^2 + \alpha_{\ddot{x},\ddot{x}} \ddot{x}_t^2 + \dots$

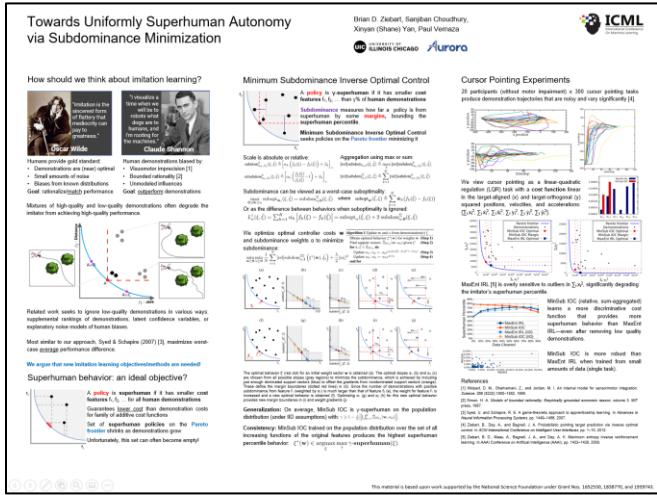








And much more...



- Relationships to suboptimality
- SVM analogies
- Consistency/generalization
- Cleaning/noise experiments

Poster: Hall E #827