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Mixture of Functional Relationships

x: Covariates or Features

y: Label

x yh

Find a mapping

Parameterize h


• Linear regression/classification

• Neural Networks



Mixture of Linear Regressions (MLR)
316 Viele and Tong
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Fig. 1. Multiple modes for the music perception data

“Hierarchical Mixture of Experts” (HME). Although early pa-
pers on this topic, such as Jordan and Jacobs (1994), describe
how to estimate the parameters of the model with the EM al-
gorithm, this model has also been considered from a Bayesian
perspective utilizing Gibbs Sampling in Peng, Jacobs and Tanner
(1996) and Waterhouse, Mackay and Robinson (1996). Tradi-
tionally, the method has been used as a nonlinear regression
estimator with focus on the mean response for each x , but re-
cent work by Jiang and Tanner (1999) has considered the entire
conditional density of y given x .

The upper left scatterplot of Fig. 1 shows a dataset of this
form. The experiment that generated this data, performed by
Cohen (1980) and previously analyzed in DeVeaux (1989),
investigated the relationship between a actual tone (x) and
the tone perceived by a musician (y) (in addition, overtones
were played as well to attempt to confuse the musician, see
Cohen (1980) for complete details). The data in the scatterplot
clearly shows two distinct lines. Sometimes the musician is
able to correctly identify the tone, sometimes not. If covariate
information were available that completely specified which
line the response belonged to were available, the resulting data
would be modeled effectively using an Analysis of Covariance.
However, such covariate data is unavailable in this example and
thus we turn to a mixture of linear regressions.

Mixtures of linear regressions differ from mixtures of multi-
variate normals in that no distribution is specified for the covari-
ates xi . A multivariate normal specifies the marginal distribution

of xi to be normal, an assumption not made here. When the xi

are normally distributed, mixtures of multivariate normals may
be used to provide regression estimators as in Muller, Erkanli
and West (1996). The mixtures of linear regressions model al-
lows for designed experiments to be considered where the xi are
specified in advance.

This manuscript’s contributions to this field are

1. It is well known that mixture likelihoods are multimodal.
Thus, the first step in an analysis is to identify as many local
modes as possible. The standard approach to this problem is
to use multiple random starts for an EM algorithm. The de-
tails of how these random starts are generated in mixtures of
linear regression models has not been previously investigated
in the literature. We illustrate through examples that the dis-
tribution of the random starts plays a key role in determining
whether important modes are found. Using an overdispersed
distribution may miss modes which consist of a small set (in
terms of Lebesgue measure) of θ values with high posterior
density values. The posterior distribution from a standard
least squares analysis may produce a posterior distribution
far from the largest modes of the posterior distribution, par-
ticularly in masked outlier problems such as those discussed
in Section 3.2.

In Section 2.3 we provide an algorithm which randomly
selects data points to generate starting values. The selec-
tion mechanism provides positive probability that data points
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The Realizable Model for MLR

Mixture of  Linear Regressions:k
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x ⇠ P, x 2 Rd

Unknown parameters:

Latent variable
t ∼U [k]

θ(1), …, θ(k) ∈ ℝd



Realizable Setting

• Balakrishnan et al., 2017, Klusowski et al., 2019:: EM starting 
from close enough points; Finite sample


• Yi et al., 2014: Initialization via spectral method; Yi et al., 2016: 
Extension to k lines


• Kwon, Caramanis, 2018: Random initialization suffice for two 
lines


• Li, Liang, 2018: Non-Gaussian covariates: Nearly optimal 
sample and computational complexities


• There are other algorithmic works (Chen et al., Diakonikolas  
and Kane, 2020)



Non-Realizability: Learning Theory for MLR

Do not assume a generative model on y

Given data points  , Let’s fit  lines 
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(x, y) ⇠ D k



Non-Realizability: Learning Theory for MLR

Question? Can you do prediction with mixtures?

Can we use those lines to predict the future labels? 

Do not assume a generative model on y

Given data points  , Let’s fit  lines 
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(x, y) ⇠ D k

Now, this is a supervised learning problem



Non-Realizability: Learning Theory for MLR

Question? Can you do prediction with mixtures?

Can we use those lines to predict the future labels? 

Possible!! If we are allowed to predict a list of  labels.k

Do not assume a generative model on y

Given data points  , Let’s fit  lines 
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(x, y) ⇠ D k

Now, this is a supervised learning problem



Predicting a list

• As long as the correct label is (or close to) one of 
the labels in the list it is a success


• In many applications (such as recommendation 
systems) we already suggest a list


• Even in plain linear regression, list prediction was 
suggested (Kothari et al., 2018)



Supervised Learning with MLR: What’s the Loss?
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Mixture of Linear Regressions in the Non-Realizable Setting

the sub-sampling based algorithm has good empirical
performance both in terms of generalization error and time
complexity making it a viable alternative to AM algorithm in
real world applications, and 3) The modified sub-sampling
based algorithm can serve as a good initialization for the AM
algorithm. (Section 5).

1.2. Related Work

As mentioned all prior works on mixture of linear regressions
are in the realizable setting, where the aim is statistical
inference. Most papers aim to to do parameter estimation
with near-optimal sample complexity, with a large fraction
focusing on the performance of the ubiquitous expectation
maximization (EM) algorithm.

Notably, in (Balakrishnan et al., 2017), it was shown that the
EM algorithm is able to find the correct lines if initialized
with close-enough estimates. Furthermore, in the finite
sample setting, (Balakrishnan et al., 2017) shows conver-
gence within an `2 norm ball of the actual parameters, and
(Klusowski et al., 2019) then extends in to an appropriately
defined cone. In (Yi et al., 2014), the initial estimates were
chosen by the spectral method to obtain nearly optimal
sample complexity for 2 lines, and then (Yi et al., 2016)
extends this to k lines. Interestingly, for the special case
of 2 lines, (Kwon & Caramanis, 2018) shows that the any
random initialization suffices. The above works assume the
covariates to be standard Gaussian random vectors. Finally,
in (Li & Liang, 2018), the assumption of standard Gaussian
covariates is relaxed (to allow Gaussians with different
covariances) and near-optimal sample and computational
complexity is achieved, albeit not via the EM algorithm.
Another line of research focuses on understanding the
convergence rate of AM, and in (Ghosh & Kannan, 2020;
Shen & Sanghavi, 2019) it is shown that AM, or its variants
can converge at a double exponential (super-linear) rate.

In another line of work in the realizable setting, one is
allowed to design covariates to query for corresponding
labels (Yin et al., 2019; Krishnamurthy et al., 2019;
Mazumdar & Pal, 2020). However, none of these works is
directly comparable to our setting.

2. Problem Formulation

We are interested in learning a mixture of functions fromX !

Y for X ✓Rd, that best fits a data distribution D over (X ,Y).
The learner is given access to n samples {xi,yi}

n
i=1 from the

distribution D. As in usual PAC learning there exists a base
function class H :X !Y and the individual functions of the
learned mixture should belong to H. However, we will work
in the paradigm of list decoding where the learner is allowed
to output a list of responses given a test sample x each of
which corresponds to a mixture component function applied

to x. We now formally define a list-decodable function class.

Definition 2.1. For a base function class H, we can
construct a k-list-decodable vector valued function class,
denoted by H̄k such that any h̄2H̄k is defined as

h̄=(h1(·),···,hk(·))

for some set of hi’s such that hi2H for all i. Thus h̄’s map
X !Y

k and form the new function class H̄k.

We will omit the k in H̄ when clear from context. As in PAC
learning, we need to define a loss measure to quantify the qual-
ity of learning. For the list decodable setting, it is natural to
compete on the minimum loss achieved by any of the values in
the list for a particular example (Kothari et al., 2018). In order
to formally define the min-loss setting, let ` :Y⇥Y!R+ be
a base loss function. Then the min-loss is defined as follows,

L(y,h̄(x)) :=min
j2[k]

`(y,h̄(x)j)=min
j2[k]

`(y,hj(x))

L(h̄) :=
1

n

nX

i=1

L(yi,h̄(xi)). (1)

In much of this paper we will specialize to a set-
ting where the base function class is linear i.e
H = {h✓,·i : 8✓ 2 Rd s.t k✓k2  w}. In this case, we
can follow a simplified notation for the min-loss,

L(✓1,...,✓k)=
1

n

nX

i=1

min
j2[k]

�
(yi�hxi,✓ji)

2
 
. (2)

with(✓⇤1 ,...,✓
⇤

k)=argmin
{✓j}k

j=1

L(✓1,...,✓k). (3)

Our focus in this paper is on generalization of the above
learning problem. In Section 3 we analyze the Rademacher
complexity (Mohri et al., 2018) of learning the mixture
function class with respect to the min-loss. However, it
is known that the Emprirical Risk Minimization (ERM)
problem in Eq. 3 even for the linear setting is NP-Hard (Yi
et al., 2014). Therefore, we propose two algorithms to
(approximately) solve this ERM problems in Sections 4.1
and 4.3 under different sets of assumptions, even when the
dataset does not follow the correct generative model.

3. Generalization

guarantees for Supervised Learning

Our main result in this section is that the Rademacher com-
plexity (Mohri et al., 2018) of learning a mixture of k func-
tions for the min-loss defined above is bounded by k times
the Rademacher complexity of the base function class from
which the mixture components are drawn. We assume that
the base loss function ` in Section 2 is µ-Lipschitz. For the

A vector valued hypothesis class:
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Mixture of Linear Regressions in the Non-Realizable Setting

the sub-sampling based algorithm has good empirical
performance both in terms of generalization error and time
complexity making it a viable alternative to AM algorithm in
real world applications, and 3) The modified sub-sampling
based algorithm can serve as a good initialization for the AM
algorithm. (Section 5).

1.2. Related Work

As mentioned all prior works on mixture of linear regressions
are in the realizable setting, where the aim is statistical
inference. Most papers aim to to do parameter estimation
with near-optimal sample complexity, with a large fraction
focusing on the performance of the ubiquitous expectation
maximization (EM) algorithm.

Notably, in (Balakrishnan et al., 2017), it was shown that the
EM algorithm is able to find the correct lines if initialized
with close-enough estimates. Furthermore, in the finite
sample setting, (Balakrishnan et al., 2017) shows conver-
gence within an `2 norm ball of the actual parameters, and
(Klusowski et al., 2019) then extends in to an appropriately
defined cone. In (Yi et al., 2014), the initial estimates were
chosen by the spectral method to obtain nearly optimal
sample complexity for 2 lines, and then (Yi et al., 2016)
extends this to k lines. Interestingly, for the special case
of 2 lines, (Kwon & Caramanis, 2018) shows that the any
random initialization suffices. The above works assume the
covariates to be standard Gaussian random vectors. Finally,
in (Li & Liang, 2018), the assumption of standard Gaussian
covariates is relaxed (to allow Gaussians with different
covariances) and near-optimal sample and computational
complexity is achieved, albeit not via the EM algorithm.
Another line of research focuses on understanding the
convergence rate of AM, and in (Ghosh & Kannan, 2020;
Shen & Sanghavi, 2019) it is shown that AM, or its variants
can converge at a double exponential (super-linear) rate.

In another line of work in the realizable setting, one is
allowed to design covariates to query for corresponding
labels (Yin et al., 2019; Krishnamurthy et al., 2019;
Mazumdar & Pal, 2020). However, none of these works is
directly comparable to our setting.

2. Problem Formulation

We are interested in learning a mixture of functions fromX !

Y for X ✓Rd, that best fits a data distribution D over (X ,Y).
The learner is given access to n samples {xi,yi}

n
i=1 from the

distribution D. As in usual PAC learning there exists a base
function class H :X !Y and the individual functions of the
learned mixture should belong to H. However, we will work
in the paradigm of list decoding where the learner is allowed
to output a list of responses given a test sample x each of
which corresponds to a mixture component function applied

to x. We now formally define a list-decodable function class.

Definition 2.1. For a base function class H, we can
construct a k-list-decodable vector valued function class,
denoted by H̄k such that any h̄2H̄k is defined as

h̄=(h1(·),···,hk(·))

for some set of hi’s such that hi2H for all i. Thus h̄’s map
X !Y

k and form the new function class H̄k.

We will omit the k in H̄ when clear from context. As in PAC
learning, we need to define a loss measure to quantify the qual-
ity of learning. For the list decodable setting, it is natural to
compete on the minimum loss achieved by any of the values in
the list for a particular example (Kothari et al., 2018). In order
to formally define the min-loss setting, let ` :Y⇥Y!R+ be
a base loss function. Then the min-loss is defined as follows,

L(y,h̄(x)) :=min
j2[k]

`(y,h̄(x)j)=min
j2[k]

`(y,hj(x))

L(h̄) :=
1

n

nX

i=1

L(yi,h̄(xi)). (1)

In much of this paper we will specialize to a set-
ting where the base function class is linear i.e
H = {h✓,·i : 8✓ 2 Rd s.t k✓k2  w}. In this case, we
can follow a simplified notation for the min-loss,

L(✓1,...,✓k)=
1

n

nX

i=1

min
j2[k]

�
(yi�hxi,✓ji)

2
 
. (2)

with(✓⇤1 ,...,✓
⇤

k)=argmin
{✓j}k

j=1

L(✓1,...,✓k). (3)

Our focus in this paper is on generalization of the above
learning problem. In Section 3 we analyze the Rademacher
complexity (Mohri et al., 2018) of learning the mixture
function class with respect to the min-loss. However, it
is known that the Emprirical Risk Minimization (ERM)
problem in Eq. 3 even for the linear setting is NP-Hard (Yi
et al., 2014). Therefore, we propose two algorithms to
(approximately) solve this ERM problems in Sections 4.1
and 4.3 under different sets of assumptions, even when the
dataset does not follow the correct generative model.

3. Generalization

guarantees for Supervised Learning

Our main result in this section is that the Rademacher com-
plexity (Mohri et al., 2018) of learning a mixture of k func-
tions for the min-loss defined above is bounded by k times
the Rademacher complexity of the base function class from
which the mixture components are drawn. We assume that
the base loss function ` in Section 2 is µ-Lipschitz. For the

Min-loss:

(base hypothesis class) h1( . ), …, hk( . ) ∈ ℋ



ERM with the Min-Loss
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Mixture of Linear Regressions in the Non-Realizable Setting

the sub-sampling based algorithm has good empirical
performance both in terms of generalization error and time
complexity making it a viable alternative to AM algorithm in
real world applications, and 3) The modified sub-sampling
based algorithm can serve as a good initialization for the AM
algorithm. (Section 5).

1.2. Related Work

As mentioned all prior works on mixture of linear regressions
are in the realizable setting, where the aim is statistical
inference. Most papers aim to to do parameter estimation
with near-optimal sample complexity, with a large fraction
focusing on the performance of the ubiquitous expectation
maximization (EM) algorithm.

Notably, in (Balakrishnan et al., 2017), it was shown that the
EM algorithm is able to find the correct lines if initialized
with close-enough estimates. Furthermore, in the finite
sample setting, (Balakrishnan et al., 2017) shows conver-
gence within an `2 norm ball of the actual parameters, and
(Klusowski et al., 2019) then extends in to an appropriately
defined cone. In (Yi et al., 2014), the initial estimates were
chosen by the spectral method to obtain nearly optimal
sample complexity for 2 lines, and then (Yi et al., 2016)
extends this to k lines. Interestingly, for the special case
of 2 lines, (Kwon & Caramanis, 2018) shows that the any
random initialization suffices. The above works assume the
covariates to be standard Gaussian random vectors. Finally,
in (Li & Liang, 2018), the assumption of standard Gaussian
covariates is relaxed (to allow Gaussians with different
covariances) and near-optimal sample and computational
complexity is achieved, albeit not via the EM algorithm.
Another line of research focuses on understanding the
convergence rate of AM, and in (Ghosh & Kannan, 2020;
Shen & Sanghavi, 2019) it is shown that AM, or its variants
can converge at a double exponential (super-linear) rate.

In another line of work in the realizable setting, one is
allowed to design covariates to query for corresponding
labels (Yin et al., 2019; Krishnamurthy et al., 2019;
Mazumdar & Pal, 2020). However, none of these works is
directly comparable to our setting.

2. Problem Formulation

We are interested in learning a mixture of functions fromX !

Y for X ✓Rd, that best fits a data distribution D over (X ,Y).
The learner is given access to n samples {xi,yi}

n
i=1 from the

distribution D. As in usual PAC learning there exists a base
function class H :X !Y and the individual functions of the
learned mixture should belong to H. However, we will work
in the paradigm of list decoding where the learner is allowed
to output a list of responses given a test sample x each of
which corresponds to a mixture component function applied

to x. We now formally define a list-decodable function class.

Definition 2.1. For a base function class H, we can
construct a k-list-decodable vector valued function class,
denoted by H̄k such that any h̄2H̄k is defined as

h̄=(h1(·),···,hk(·))

for some set of hi’s such that hi2H for all i. Thus h̄’s map
X !Y

k and form the new function class H̄k.

We will omit the k in H̄ when clear from context. As in PAC
learning, we need to define a loss measure to quantify the qual-
ity of learning. For the list decodable setting, it is natural to
compete on the minimum loss achieved by any of the values in
the list for a particular example (Kothari et al., 2018). In order
to formally define the min-loss setting, let ` :Y⇥Y!R+ be
a base loss function. Then the min-loss is defined as follows,

L(y,h̄(x)) :=min
j2[k]

`(y,h̄(x)j)=min
j2[k]

`(y,hj(x))

L(h̄) :=
1

n

nX

i=1

L(yi,h̄(xi)). (1)

In much of this paper we will specialize to a set-
ting where the base function class is linear i.e
H = {h✓,·i : 8✓ 2 Rd s.t k✓k2  w}. In this case, we
can follow a simplified notation for the min-loss,

L(✓1,...,✓k)=
1

n

nX

i=1

min
j2[k]

�
(yi�hxi,✓ji)

2
 
. (2)

with(✓⇤1 ,...,✓
⇤

k)=argmin
{✓j}k

j=1

L(✓1,...,✓k). (3)

Our focus in this paper is on generalization of the above
learning problem. In Section 3 we analyze the Rademacher
complexity (Mohri et al., 2018) of learning the mixture
function class with respect to the min-loss. However, it
is known that the Emprirical Risk Minimization (ERM)
problem in Eq. 3 even for the linear setting is NP-Hard (Yi
et al., 2014). Therefore, we propose two algorithms to
(approximately) solve this ERM problems in Sections 4.1
and 4.3 under different sets of assumptions, even when the
dataset does not follow the correct generative model.

3. Generalization

guarantees for Supervised Learning

Our main result in this section is that the Rademacher com-
plexity (Mohri et al., 2018) of learning a mixture of k func-
tions for the min-loss defined above is bounded by k times
the Rademacher complexity of the base function class from
which the mixture components are drawn. We assume that
the base loss function ` in Section 2 is µ-Lipschitz. For the
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Mixture of Linear Regressions in the Non-Realizable Setting

the sub-sampling based algorithm has good empirical
performance both in terms of generalization error and time
complexity making it a viable alternative to AM algorithm in
real world applications, and 3) The modified sub-sampling
based algorithm can serve as a good initialization for the AM
algorithm. (Section 5).

1.2. Related Work

As mentioned all prior works on mixture of linear regressions
are in the realizable setting, where the aim is statistical
inference. Most papers aim to to do parameter estimation
with near-optimal sample complexity, with a large fraction
focusing on the performance of the ubiquitous expectation
maximization (EM) algorithm.

Notably, in (Balakrishnan et al., 2017), it was shown that the
EM algorithm is able to find the correct lines if initialized
with close-enough estimates. Furthermore, in the finite
sample setting, (Balakrishnan et al., 2017) shows conver-
gence within an `2 norm ball of the actual parameters, and
(Klusowski et al., 2019) then extends in to an appropriately
defined cone. In (Yi et al., 2014), the initial estimates were
chosen by the spectral method to obtain nearly optimal
sample complexity for 2 lines, and then (Yi et al., 2016)
extends this to k lines. Interestingly, for the special case
of 2 lines, (Kwon & Caramanis, 2018) shows that the any
random initialization suffices. The above works assume the
covariates to be standard Gaussian random vectors. Finally,
in (Li & Liang, 2018), the assumption of standard Gaussian
covariates is relaxed (to allow Gaussians with different
covariances) and near-optimal sample and computational
complexity is achieved, albeit not via the EM algorithm.
Another line of research focuses on understanding the
convergence rate of AM, and in (Ghosh & Kannan, 2020;
Shen & Sanghavi, 2019) it is shown that AM, or its variants
can converge at a double exponential (super-linear) rate.

In another line of work in the realizable setting, one is
allowed to design covariates to query for corresponding
labels (Yin et al., 2019; Krishnamurthy et al., 2019;
Mazumdar & Pal, 2020). However, none of these works is
directly comparable to our setting.

2. Problem Formulation

We are interested in learning a mixture of functions fromX !

Y for X ✓Rd, that best fits a data distribution D over (X ,Y).
The learner is given access to n samples {xi,yi}

n
i=1 from the

distribution D. As in usual PAC learning there exists a base
function class H :X !Y and the individual functions of the
learned mixture should belong to H. However, we will work
in the paradigm of list decoding where the learner is allowed
to output a list of responses given a test sample x each of
which corresponds to a mixture component function applied

to x. We now formally define a list-decodable function class.

Definition 2.1. For a base function class H, we can
construct a k-list-decodable vector valued function class,
denoted by H̄k such that any h̄2H̄k is defined as

h̄=(h1(·),···,hk(·))

for some set of hi’s such that hi2H for all i. Thus h̄’s map
X !Y

k and form the new function class H̄k.

We will omit the k in H̄ when clear from context. As in PAC
learning, we need to define a loss measure to quantify the qual-
ity of learning. For the list decodable setting, it is natural to
compete on the minimum loss achieved by any of the values in
the list for a particular example (Kothari et al., 2018). In order
to formally define the min-loss setting, let ` :Y⇥Y!R+ be
a base loss function. Then the min-loss is defined as follows,

L(y,h̄(x)) :=min
j2[k]

`(y,h̄(x)j)=min
j2[k]

`(y,hj(x))

L(h̄) :=
1

n

nX

i=1

L(yi,h̄(xi)). (1)

In much of this paper we will specialize to a set-
ting where the base function class is linear i.e
H = {h✓,·i : 8✓ 2 Rd s.t k✓k2  w}. In this case, we
can follow a simplified notation for the min-loss,

L(✓1,...,✓k)=
1

n

nX

i=1

min
j2[k]

�
(yi�hxi,✓ji)

2
 
. (2)

with(✓⇤1 ,...,✓
⇤

k)=argmin
{✓j}k

j=1

L(✓1,...,✓k). (3)

Our focus in this paper is on generalization of the above
learning problem. In Section 3 we analyze the Rademacher
complexity (Mohri et al., 2018) of learning the mixture
function class with respect to the min-loss. However, it
is known that the Emprirical Risk Minimization (ERM)
problem in Eq. 3 even for the linear setting is NP-Hard (Yi
et al., 2014). Therefore, we propose two algorithms to
(approximately) solve this ERM problems in Sections 4.1
and 4.3 under different sets of assumptions, even when the
dataset does not follow the correct generative model.

3. Generalization

guarantees for Supervised Learning

Our main result in this section is that the Rademacher com-
plexity (Mohri et al., 2018) of learning a mixture of k func-
tions for the min-loss defined above is bounded by k times
the Rademacher complexity of the base function class from
which the mixture components are drawn. We assume that
the base loss function ` in Section 2 is µ-Lipschitz. For the

The Max. Likelihood loss is close but not exactly

The “min” is replaced by “soft-min” 

In this paper: Ridge regression— Base class:

Empirical Loss:
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Gen = sup
h̄2Hk

EL� L

We show that the (empirical) Rademacher Complexity of  :

 

ℋk

where � is a set of Rademacher RV’s. As a notational convenience, we use Dx to denote the marginal
distribution over the covariates and Sx as the set of observed covariates. The Rademacher complexity is
then defined as R̂n(H) = ESx⇠Dn

x
[R̂S(H)]. We are interested in the (empirical) Radmacher complexity of

the mixture function class along with the min-loss which is defined as

R̂S(H̄k) =
1

n
E�

"
sup
h̄2H̄k

nX

i=1

�iL(yi, h̄(xi))

#

where {xi, yi} are n samples from D
n. Our first result is the following theorem.

Theorem 3.1. We have the following bound,

R̂S(H̄k)  kµR̂Sx(H) (5)

for any S = {xi, yi}
n
i=1 and Sx = {xi}

n
i=1. Therefore, it also follows that R̂n(H̄k)  kµR̂n(H).

We provide the proof in Appendix B. In the rest of the paper our focus will be on the setting where
the base function class is linear i.e H = {h✓, ·i : 8✓ 2 Rd s.t k✓k2  w}. It is well-known that when

X ✓ {x 2 Rd : kxk2  R} that R̂n(H) = O(wR/
p
n) (MRT18, Chapter 11). Therefore, our above result

would immediately yield that the Rademacher complexity of the mixture function class with min-loss
satisfies R̂n(H̄k) = O((kµwR)/

p
n).

4 Algorithms in the non-realizable setting

4.1 AM Algorithm

Recall that our goal is to address the problem of mixed linear regression, without any generative assumption.
Given the data-label pairs {xi, yi}

n
i=1, where xi 2 Rd and yi 2 R, our goal is to fit k linear predictors,

namely {✓
⇤

j}
k
j=1. We analyze an alternating minimization (AM) algorithm, and show that, provided suitable

initialization, AM converges at an exponential speed.
We first fix a few notation here. Suppose that the optimal parameters {✓

⇤

j}
k
j=1 partition the dataset

{xi, yi}
n
i=1 in k sets, {S⇤

j }
k
j=1, where

S
⇤

j = {i 2 [n] : (yi � hxi, ✓
⇤

1i)
2 = min

j2[k]
(yi � hxi, ✓

⇤

j i)
2
},

and similarly for S⇤

2 , . . . , S
⇤

k . In words, S⇤

1 is the set of observations, where ✓
⇤

1 is a better (linear) predictor
compared to ✓

⇤

2, . . . , ✓
⇤

k.

4.1.1 Gradient Alternating Minimization (AM)

We now propose a provable algorithm in this section. The algorithm to find the best linear predictors in
mixed setup is the classical Alternating Minimization (AM) (YCS14; YCS16). Our proposed approach
in formally given in Algorithm 1. Every iteration of the algorithm has in two steps: (a) given data, we
first estimate which, out of k predictors obtains minimum loss in fitting the data (through a quadratic
loss function); and (b) after this, we take a gradient step with a chosen step size to update the underlying
parameter estimates.

In the first step, based on the current estimates, i.e., {✓(t)j }
k
j=1, Algorithm 1 first finds the set of indices,

S
(t)
j for j 2 [k], and partitions the observations. We first calculate the residual on each of the possible

predictors and choose the one minimizing it, and thereafter a partition is formed by by simply collecting

the observations corresponding to a particular predictor. In this way, we form S
(t)
j for all j 2 [k] at iteration

t.

5

Supervised setup: what can we say about generalization

Recall

where : vector hypothesis classℋk
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the sub-sampling based algorithm has good empirical
performance both in terms of generalization error and time
complexity making it a viable alternative to AM algorithm in
real world applications, and 3) The modified sub-sampling
based algorithm can serve as a good initialization for the AM
algorithm. (Section 5).

1.2. Related Work

As mentioned all prior works on mixture of linear regressions
are in the realizable setting, where the aim is statistical
inference. Most papers aim to to do parameter estimation
with near-optimal sample complexity, with a large fraction
focusing on the performance of the ubiquitous expectation
maximization (EM) algorithm.

Notably, in (Balakrishnan et al., 2017), it was shown that the
EM algorithm is able to find the correct lines if initialized
with close-enough estimates. Furthermore, in the finite
sample setting, (Balakrishnan et al., 2017) shows conver-
gence within an `2 norm ball of the actual parameters, and
(Klusowski et al., 2019) then extends in to an appropriately
defined cone. In (Yi et al., 2014), the initial estimates were
chosen by the spectral method to obtain nearly optimal
sample complexity for 2 lines, and then (Yi et al., 2016)
extends this to k lines. Interestingly, for the special case
of 2 lines, (Kwon & Caramanis, 2018) shows that the any
random initialization suffices. The above works assume the
covariates to be standard Gaussian random vectors. Finally,
in (Li & Liang, 2018), the assumption of standard Gaussian
covariates is relaxed (to allow Gaussians with different
covariances) and near-optimal sample and computational
complexity is achieved, albeit not via the EM algorithm.
Another line of research focuses on understanding the
convergence rate of AM, and in (Ghosh & Kannan, 2020;
Shen & Sanghavi, 2019) it is shown that AM, or its variants
can converge at a double exponential (super-linear) rate.

In another line of work in the realizable setting, one is
allowed to design covariates to query for corresponding
labels (Yin et al., 2019; Krishnamurthy et al., 2019;
Mazumdar & Pal, 2020). However, none of these works is
directly comparable to our setting.

2. Problem Formulation

We are interested in learning a mixture of functions fromX !

Y for X ✓Rd, that best fits a data distribution D over (X ,Y).
The learner is given access to n samples {xi,yi}

n
i=1 from the

distribution D. As in usual PAC learning there exists a base
function class H :X !Y and the individual functions of the
learned mixture should belong to H. However, we will work
in the paradigm of list decoding where the learner is allowed
to output a list of responses given a test sample x each of
which corresponds to a mixture component function applied

to x. We now formally define a list-decodable function class.

Definition 2.1. For a base function class H, we can
construct a k-list-decodable vector valued function class,
denoted by H̄k such that any h̄2H̄k is defined as

h̄=(h1(·),···,hk(·))

for some set of hi’s such that hi2H for all i. Thus h̄’s map
X !Y

k and form the new function class H̄k.

We will omit the k in H̄ when clear from context. As in PAC
learning, we need to define a loss measure to quantify the qual-
ity of learning. For the list decodable setting, it is natural to
compete on the minimum loss achieved by any of the values in
the list for a particular example (Kothari et al., 2018). In order
to formally define the min-loss setting, let ` :Y⇥Y!R+ be
a base loss function. Then the min-loss is defined as follows,

L(y,h̄(x)) :=min
j2[k]

`(y,h̄(x)j)=min
j2[k]

`(y,hj(x))

L(h̄) :=
1

n

nX

i=1

L(yi,h̄(xi)). (1)

In much of this paper we will specialize to a set-
ting where the base function class is linear i.e
H = {h✓,·i : 8✓ 2 Rd s.t k✓k2  w}. In this case, we
can follow a simplified notation for the min-loss,

L(✓1,...,✓k)=
1

n

nX

i=1

min
j2[k]

�
(yi�hxi,✓ji)

2
 
. (2)

with(✓⇤1 ,...,✓
⇤

k)=argmin
{✓j}k

j=1

L(✓1,...,✓k). (3)

Our focus in this paper is on generalization of the above
learning problem. In Section 3 we analyze the Rademacher
complexity (Mohri et al., 2018) of learning the mixture
function class with respect to the min-loss. However, it
is known that the Emprirical Risk Minimization (ERM)
problem in Eq. 3 even for the linear setting is NP-Hard (Yi
et al., 2014). Therefore, we propose two algorithms to
(approximately) solve this ERM problems in Sections 4.1
and 4.3 under different sets of assumptions, even when the
dataset does not follow the correct generative model.

3. Generalization

guarantees for Supervised Learning

Our main result in this section is that the Rademacher com-
plexity (Mohri et al., 2018) of learning a mixture of k func-
tions for the min-loss defined above is bounded by k times
the Rademacher complexity of the base function class from
which the mixture components are drawn. We assume that
the base loss function ` in Section 2 is µ-Lipschitz. For the

1. Non-Convex loss

2. Yi et al.: Intractable (by 

reduction from subset-
sum) 



What if we still use EM

There isn’t a probabilistic model anymore

So what’s EM?

Let’s do AM (Alternating Minimization)
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(xi, yi)
n
i=1;xi 2 Rd, yi 2 R



Alternating Minimization—a classical solution

Initialize with k lines.

Repeat:

1. For a fixed set of lines, 

find the partition 

2. For each partition, learn 

the optimal lines


Gradient AM:

Instead of the optimization in the second step, take a 
gradient step

Disclaimer: Gradient EM were already used in Balakrishanan, Wainwright, Yu, ’17 
with the Probabilistic model
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Mixture of Linear Regressions in the Non-Realizable Setting

Algorithm 1 Gradient AM for Mixture of Regressions
1: Input: {xi,yi}

n
i=1, Step size �

2: Initialization: Initial iterate {✓(0)j }
k
j=1

3: for t=0,1,...,T�1 do

4: Partition:
5: Construct {S(t)

j }
k
j=1 such that

S
(t)
j ={i2 [n] : (yi�hxi,✓

(t)
j i)2

= min
j02[k]

(yi�hxi,✓
(t)
j0 i)

2
}8j2 [k]

6: Gradient Step:

✓
(t+1)
j =✓

(t)
j �

�

n

X

i2S(t)
j

rFi(✓
(t)
j ),8j2 [k]

7: where Fi(✓
(t)
j )=(yi�hxi,✓

(t)
j i)2

8: end for

9: Output: {✓
(T )
j }

k
j=1

words, we want to estimate {✓⇤j }kj=1.

Without loss of generality, and for scaling purposes, we take

max
i2[n]

kxik1andmax
i2[n]

|yi|1.

Note that the upper-bound of 1 can indeed be scaled by the
maximum norm of the data.

Recall that {S⇤

j }
n
j=1 are the true partition given by the opti-

mal parameters {✓⇤j }nj=1. Before providing the theoretical
result, let us define a few problem dependent geometric pa-
rameters. We define the (problem dependent) separation as

�=min
j2[k]

min
i/2S⇤

j

|yi�hxi,✓
⇤

j i|.

Note that, under the generative model,�minj 6=`k✓
⇤

`�✓
⇤

j k,
which is the usual definition of separation, as proposed in
(Yi et al., 2016). The above is a natural extension to the
non-generative framework.

We make the following assumption:
Assumption 4.1. For all i 2 S

⇤

j , we have
maxi |yi � hxi, ✓

⇤

j i|  � and maxi krFi(✓⇤j )k  µ,
where Fi(✓) = (yi � hxi, ✓i)2. Furthermore, (d, k,�,�)

satisfies kexp
⇣
�C

(��2�)2

(maxj2[k]k✓
⇤
j k)

2 d

⌘
 1� c, where c < 1

is a constant.

Let us explain the above assumption in detail. In particular,
if yi has a generative model (without noise), � = 0,µ = 0.
This is because, for i 2 S

⇤

j , we have yi = hxi,✓
⇤

j i, and the
above term vanishes. The previous works on mixed linear
regression, for example (Yi et al., 2014; 2016; Ghosh &
Kannan, 2020), analyzes this setup exactly. A generative

model is assumed and the analysis is done in the noise less
case. However, we do not assume any generative model here
and hence we need to control these bias parameters. Shortly,
we show that, provided µ is sufficiently small, Algorithm 1
converges at an exponential speed.

Finally, the condition on (d, �, �) is quite mild, since
the left hand side is an exponential decaying function
with dimension d. Hence, for moderate dimension, this
mild condition is easily satisfied. Furthermore, it decays
exponentially with the gap � as well, and so with a separable
problem, the above condition holds.

Furthermore, to avoid degeneracy, i.e., {|S⇤

j |}
k
j=1 is small,

we have, for all i 2 [n], minj2[k] P[i 2 S
⇤

j ] � c̄ where c̄

is a constant. Note that these type of assumption is quite
common, and used in previous literature as well. As an
instance, (Yi et al., 2014; 2016; Ghosh & Kannan, 2020) use
it for mixture of regressions, (Ghosh et al., 2020) use it for
AM in a distributed clustering problem, and (Ghosh et al.,
2019) use it for max-affine regression.

We now present our main results. In the following, we
consider one iteration of Algorithm 1, and show a contraction
in parameter space.
Theorem 4.2. Let Assumption 4.1 holds, n�Ckd and the
covariates {xi} have zero mean. Furthermore, suppose

k✓j�✓
⇤

j k
c̃
p
d
k✓

⇤

j k.

for all j 2 [k]. Then, running one iteration of Algorithm 1
with �=1/4c̄, yields {✓+j }

k
j=1 satisfying

k✓
+
j �✓

⇤

j k
1

2
k✓j�✓

⇤

j k+c1µk✓
⇤

j k

+ckexp

 
�c1

(��2�)2

(maxjk✓⇤j k)
2
d

!
k✓

⇤

j k,

with probability at least 1�C1exp(�C2d).

Remark 4.3. The 1/
p
d factor in the initialization occurs

owing to a covering net argument. In standard AM, with
generative model, resampling is usually done, and hence the
factor is avoided.
Corollary 4.4. Suppose µ satisfies

µc2

 
c̃
p
d
�ckexp

 
�c1

(��2�)2

(maxjk✓⇤j k)
2
d

!!
,

where c2 is an universal constant. With proper choice of c2,
we obtain, for all j2 [k],

k✓
+
j �✓

⇤

j k
3

4
k✓j�✓

⇤

j k,

which implies a contraction.
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Gradient AM convergence
• Under some regularity assumption on data


• And if initial lines are close enough (within 1/sqrt{d})
∥θini,i − θ*i ∥ ≲

1

d
∥θ*i ∥

Gradient AM converges to the global optimum of the 

Min-Loss:  , for  all 

 with high probability

∥θt+1,i − θ*i ∥ ≤
1
2

∥θt,i − θ*i ∥ + bias

i ∈ [k]

• In practice works well with multiple-restarts



Other Algorithms

We have another poly-time algorithms with good 
approximation guarantees


Random Subset O(k2d log n)



Other Algorithms

We have another poly-time algorithm with good 
approximation guarantees


Random Subset O(k2d log n)

Go through all k-partitions and 
calculate least-squares 

solution in each part and 
choose the solution with the 

best loss on the whole 
dataset



Other Algorithms

We have another poly-time algorithm with good 
approximation guarantees


Random Subset O(k2d log n)

Go through all k-partitions and 
calculate least-squares 

solution in each part and 
choose the solution with the 

best loss on the whole 
dataset

O(1/ log n) approximation 



Other Algorithms

We have another poly-time algorithm with good 
approximation guarantees


Random Subset O(k2d log n)

Go through all k-partitions and 
calculate least-squares 

solution in each part and 
choose the solution with the 

best loss on the whole 
dataset

$O(1/ log n)$ approximation 

In practice this can be used as the initialization for AM.



Thank You All!
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