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Mixture of Functional Relationships

x: Covariates or Features
v: Label
. .'. .. . o © s (s}
X h > y 2.5 1 % o : ¢

Find a mapping
Parameterize h y = hy(x)

* Linear regression/classification
 Neural Networks



Mixture of Linear Regressions (MLR)
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* De Veaux, 1989;
* Viele and Tong, 2002

Biology

e Yiet. al ‘2014
e Yin et. al, ‘2017



Mixture of Linear Regressions

Economics
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Figure 3. Quantities (in tons) and values (in thousands of euros) of 677 monthly imports of a fishery product
from a third country into the EU, over a period of three years. Flows to MS7 (solid dots) and flows to the other
Member States (open circles) form distinct groups following different regression lines. On the bottom-left an
abnormal single flow to MS11.



The Realizable Model for MLR

Mixture of k Linear Regressions: (x, y)

z~ P, xeR?
| atent variable
[~y [k]
y | z,t ~ N((z,01),0?)

Unknown parameters:

oL ... 0w e R4



Realizable Setting

* Balakrishnan et al., 2017, Klusowski et al., 2019:: EM starting
from close enough points; Finite sample

* Yietal., 2014: Initialization via spectral method; Yi et al., 2016:
Extension to k lines

e Kwon, Caramanis, 2018: Random initialization suffice for two
lines

e Li, Liang, 2018: Non-Gaussian covariates: Nearly optimal
sample and computational complexities

* There are other algorithmic works (Chen et al., Diakonikolas
and Kane, 2020)



Non-Realizability: Learning Theory for MLR

Do not assume a generative model on'y

Given data points (x,y) ~D | Let's fit k lines
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Non-Realizability: Learning Theory for MLR

Do not assume a generative model on'y

Given data points (x,y) ~D | Let's fit k lines

Now, this Is a supervised learning problem

Question? Can you do prediction with mixtures?

Can we use those lines to predict the future labels?

Possible!! If we are allowed to predict a list of k labels.



Predicting a list

* As long as the correct label is (or close to) one of
the labels in the list it is a success

* |In many applications (such as recommendation
systems) we already suggest a list

 Even in plain linear regression, list prediction was
suggested (Kothari et al., 2018)



Supervised Learning with MLR: What’s the Loss?

A vector valued hypothesis class: h=(hi(-),-,hi(-))

h(.),...m(.) € Z (base hypothesis class)

Min-loss:

L(y,h(x)):= ;@g%ﬁ(y,h(x)j) = ;@g%f(y,h;f (7))

L(h)= = > Ly (i),



ERM with the Min-Loss

In this paper: Ridge regression— Base class:

H o= {(0,) : V0 € Rist|0], < w)

Empirical Loss:

L(64,...,0 g mm{ —(x,0,
36

with(67,...,0;) =argminL(61,...,0
{0; }§:1

The Max. Likelihood loss is close but not exactly
The "min” is replaced by “soft-min”



Generalization Guarantees with MLR

Supervised setup: what can we say about generalization

Recall Gen = sup EL - L
EEHk

where # ;. vector hypothesis class

We show that the (empirical) Rademacher Complexity of Z, :

A J—

Rs(Hr) < kuRs, (H)



Solving the ERM

1. Non-Convex loss

2. Yietal.: Intractable (by
reduction from subset-
sum) 2




What if we still use EM

(mzvyZ)?zlv'rz c Rd,yi c R

There isn't a probabilistic model anymore
So what's EM?

Let’s do AM (Alternating Minimization)



Alternating Minimization—a classical solution

Initialize with K lines.

Repeat:

1. For a fixed set of lines,

2. For each pa

the optimal |i

Gradient AM:

find the parti

tion
rtition, learn

NeS

1 e+ - + *
+ .14; +T 4f
- e
e * T 4
4+ 4+
o4

Instead of the optimization in the second step, take a

gradient step

Disclaimer: Gradient EM were already used in Balakrishanan, Wainwright, Yu, '17
with the Probabilistic model



Gradient AM

Algorithm 1 Gradient AM for Mixture of Regressions

1: Imput: {x;,y;} I, Step size

2: Initialization: Initial iterate {H§O)}§:1
3: fort=0.,1,.... T'—1do

4:  Partition:

5. Construct {S J(-t) }5_, such that

Sj(-t) ={ien]:(y;— <~”Ez',9§-t)>)2

= min (y,— (@;,0,))?}Vj € [K]
j’€k]

6:  Gradient Step:

1 Y :
oD =6 2 N VR (6) Vi K]

]
ieS(.t)

7:  where Fi(QJ(-t)) (1 (:E‘z,@(t)»
8: end for
9: Output: {9](-T) }§:1




Gradient AM convergence

* Under some regularity assumption on data

« And ifinitial lines are close enolugh (within 1/sqgrt{d})
10, — Ol S —=1167|]

ni,l \/C_Z

Gradient AM converges to thle global optimum of the
Min-Loss: [|0,,,,; — €F| < 5”6’” — OF|| + bias, for all
| € [k] with high probability

* |n practice works well with multiple-restarts

18



Other Algorithms

We have another poly-time algorithms with good
approximation guarantees

- Random Subset O(k*d log n)
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choose the solution with the

best loss on the whole
dataset




Other Algorithms

We have another poly-time algorithm with good
approximation guarantees

N Random Subset O(k*d log n)

' Go through all k-partitions and
— calculate least-squares

solution in each part and
choose the solution with the

best loss on the whole
dataset

O(1/4/1og n) approximation



Other Algorithms

We have another poly-time algorithm with good
approximation guarantees

M |n practice this can be used as the initialization for AM.

dataset

$0(1/4/1log n)$ approximation
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