# On the Equivalence Between Temporal and Static Equivariant Graph Representations

Jianfei Gao

**Purdue Univerisity** 

gao462@purdue.edu

Bruno Ribeiro

**Purdue University** 

ribeiro@cs.purdue.edu





#### Contribution

 We summarize existing temporal graph neural networks (TGNNs) into two main categories and study their expressivity power.

- We propose a simple but effective framework which
  - Is **theoretically more expressive** than existing works;
  - Achieve <u>similar or even better</u> performance;
  - Can be **extremely efficient** in certain tasks.

A collection of dynamically changing nodes and edges.

- Temporal graph is common in real-world scenario:
  - Social
  - Communication
  - Transportation/Traffic
  - Biological/Medical
  - •

#### **Snapshotted**



• A sequence of snapshots.

$$\left[G_{t_1},G_{t_2},\cdots\right]$$

 A multi-graph aggregation of all history snapshots.

$$G^*_{\mathsf{agg}}$$

#### **Aggregated**





## Temporal Graph Neural Network





#### Temporal Graph Neural Network

#### Snapshotted Time-and-Graph



- 1. GNN is independently applied to each snapshot;
- 2. A sequence modeling is used to map GNN embeddings into final representation.

### Temporal Graph Neural Network

- 1. Aggregate all history graphs together into a new graph;
- 2. Feed new graph into GNN to get final representation.



## Expressivity<sup>1</sup>

Theorem 3.5 (Informal)

If use only 1WLGNNs, time-then-graph is strictly more expressive than timeand-graph.

(1WL means 1-Weisfeiler-Lehman<sup>2,3</sup>.)

Theorem 3.6 (Informal)

With more expressive GNNs<sup>4</sup>, the expressivity gap between time-and-graph and time-then-graph become less, and eventually becomes the same with the most expressive GNNs<sup>5</sup>.

- 1. See paper.
- 2. Weisfeiler, B., & Leman, A. (1968). The reduction of a graph to canonical form and the algebra which appears therein. NTI, Series, 2(9), 12-16.
- 3. Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks? arXiv preprint arXiv:1810.00826.
- 4. Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019). Weisfeiler and leman go neural: Higher-order graph neural networks.
- 5. Maron, H., Fetaya, E., Segol, N., & Lipman, Y. (2019, May). On the universality of invariant networks.









#### Result

 GRU-GCN can achieve far better performance over existing methods in tasks satisfying hypothesis made in proves.

| Representation  | Model       | DynCSL                      | Brain-10                      |  |
|-----------------|-------------|-----------------------------|-------------------------------|--|
|                 | EvolveGCN-O | $0.50 \pm 0.00$             | $0.58 \pm 0.10$               |  |
| graph-then-time | EvolveGCN-H | $0.50{\pm}0.00$             | $0.60 \pm 0.11$               |  |
| grapn-inen-iime | GCN-GRU     | $0.50{\pm}0.00$             | $0.87{\pm0.07}$               |  |
|                 | DySAT       | $0.50{\pm}0.00$             | $0.77{\pm0.07}$               |  |
| time-and-graph  | GCRN-M2     | $0.52{\pm}0.04$             | $0.77 \pm 0.04$               |  |
| ume-ana-grapn   | DCRNN       | $0.51{\pm}0.03$             | $0.84{\pm}0.02$               |  |
|                 | TGAT        | $0.48 \pm 0.03$             | $0.80 \pm 0.03$               |  |
| time-then-graph | TGN         | $0.51{\pm}0.04$             | $\underline{0.91 {\pm} 0.03}$ |  |
|                 | GRU-GCN     | $\underline{1.00{\pm}0.00}$ | $\underline{0.91{\pm}0.03}$   |  |

#### Result

• GRU-GCN can achieve **similar or slightly better** performance against existing methods in real-world applications.

| Representation  | Model       | PeMS04                                       |                             | PeMS08                               |                               | Spain-COVID                               |                                       | England-COVID                         |                               |
|-----------------|-------------|----------------------------------------------|-----------------------------|--------------------------------------|-------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------|
| Representation  |             | Transductive                                 | Inductive                   | Transductive                         | Inductive                     | Transductive                              | Inductive                             | Transductive                          | Inductive                     |
| graph-then-time | EvolveGCN-O | $3.20{\pm}_{0.25}\%$                         | $2.61 \pm 0.42\%$           | $2.65{\pm}0.12\%$                    | $2.40{\pm}_{0.27}\%$          | $2.64{\pm}0.12\%$                         | $2.02{\pm}0.11\%$                     | $4.07{\pm}0.73\%$                     | $3.88 \pm 0.47\%$             |
|                 | EvolveGCN-H | $3.34{\pm}0.14\%$                            | $2.84{\pm}0.31\%$           | $2.81 {\pm} 0.28\%$                  | $2.81 {\pm} 0.23\%$           | $2.62{\pm}0.33\%$                         | $2.09{\pm}0.30\%$                     | $4.14{\pm}1.14\%$                     | $3.50{\pm}0.42\%$             |
|                 | GCN-GRU     | $\underline{1.60 {\scriptstyle \pm 0.14}}\%$ | $1.28 \pm 0.04\%$           | $1.40{\pm}0.26\%$                    | $1.07 \pm 0.03\%$             | $2.39{\pm}0.06\%$                         | $1.22 {\pm} 0.66\%$                   | $3.56 {\pm 0.26}\%$                   | $2.97 {\pm 0.34}\%$           |
|                 | DySAT       | $1.86 {\pm} 0.08\%$                          | $1.58 {\pm} 0.08\%$         | $1.49{\pm}0.08\%$                    | $1.34 \pm 0.03\%$             | $2.15{\scriptstyle \pm 0.18}\%$           | $0.89 {\scriptstyle\pm0.44\%}$        | $3.67{\pm}0.15\%$                     | $3.32{\scriptstyle\pm0.76}\%$ |
| time-and-graph  | GCRN-M2     | $1.70 {\pm} 0.20\%$                          | $1.20 \pm 0.06\%$           | $1.30{\pm}0.17\%$                    | $1.00 \pm 0.10\%$             | $1.94{\pm}_{0.54}\%$                      | $1.54{\pm}0.50\%$                     | $3.85{\pm}0.39\%$                     | $3.37{\pm}0.27\%$             |
|                 | DCRNN       | $1.67{\pm}0.19\%$                            | $1.27 \pm 0.06\%$           | $1.32 {\pm} 0.19\%$                  | $1.07 \pm 0.03\%$             | $2.12{\pm}_{0.33}\%$                      | $0.90{\pm}_{0.21}\%$                  | $3.58{\pm}_{0.53}\%$                  | $3.09{\pm}0.24\%$             |
| time-then-graph | TGAT        | $3.11{\pm}0.50\%$                            | $2.25{\pm}0.27\%$           | $2.66{\pm}0.27\%$                    | $2.34{\pm}0.19\%$             | $2.46{\pm}_{0.04}\%$                      | $1.81 \pm 0.14\%$                     | $5.44{\pm}0.46\%$                     | $5.13 \pm 0.26\%$             |
|                 | TGN         | $1.79{\pm}_{0.21}\%$                         | $1.19{\pm0.07}\%$           | $1.49{\pm}_{0.26}\%$                 | $0.99 {\pm 0.06}\%$           | $\underline{1.62}{\scriptstyle\pm0.33}\%$ | $1.25{\pm}_{0.48}\%$                  | $4.15{\scriptstyle \pm 0.81}\%$       | $3.17{\pm}0.23\%$             |
|                 | GRU-GCN     | $\boldsymbol{1.61} {\pm 0.35\%}$             | $\underline{1.13\pm0.05}\%$ | $\underline{1.27}\underline{0.21}\%$ | $\underline{0.89 \pm 0.07}\%$ | $1.66{\pm}0.63\%$                         | $\underline{0.65}\underline{+0.16}\%$ | $\underline{3.41}\underline{10.28}\%$ | $2.87 \pm 0.19\%$             |

#### Result

- GRU-GCN can achieve **similar or slightly better** performance against existing methods in real-world applications.
- But GRU-GCN will be **far more efficient** on those real-world tasks in both time and memory costs.

|                 |                | PeMS04   |                    | PeMS08   |                    | Spain-COVID |                    | England-COVID |                    |
|-----------------|----------------|----------|--------------------|----------|--------------------|-------------|--------------------|---------------|--------------------|
| Representation  | Model          | Peak GPU | Average Training   | Peak GPU | Average Training   | Peak GPU    | Average Training   | Peak GPU      | Average Training   |
|                 |                | Memory   | Time per Minibatch | Memory   | Time per Minibatch | Memory      | Time per Minibatch | Memory        | Time per Minibatch |
| graph-then-time | EvolveGCN-O    | 86 MB    | 19ms               | 55 MB    | 17 ms              | 221 MB      | 14 ms              | 3MB           | 9 ms               |
|                 | EvolveGCN-H    | 205 MB   | 40 ms              | 130 MB   | 31 ms              | 512 MB      | 21 ms              | 4 MB          | 15 ms              |
|                 | GCN-GRU        | 1089 MB  | 17 ms              | 602 MB   | 15 ms              | 140 MB      | 12 ms              | 6 MB          | 8 ms               |
|                 | DySAT          | 1911 MB  | 26 ms              | 1060 MB  | 24 ms              | 137 MB      | 18 ms              | 7 MB          | 14 ms              |
| time-and-graph  | GCRN-M2        | 3099 MB  | 195 ms             | 1871 MB  | 159 ms             | 5423 MB     | 124 ms             | 22 MB         | 84 ms              |
|                 | DCRNN          | 1730 MB  | 83 ms              | 1024 MB  | 65 ms              | 2460 MB     | 50 ms              | 13 MB         | 34 ms              |
| time-then-graph | TGAT           | 7945 MB  | 101 ms             | 5680 MB  | 72 ms              | 7300 MB     | 94 ms              | 96 MB         | 21 ms              |
|                 | TGN            | 3963 MB  | 25 ms              | 2908 MB  | 19 ms              | 5205 MB     | 29 ms              | 73 MB         | 16 ms              |
|                 | <b>GRU-GCN</b> | 859 MB   | <u>7 ms</u>        | 574 MB   | <u>5 ms</u>        | 1538 MB     | <u>10 ms</u>       | 52 MB         | <u>3 ms</u>        |

#### Conclusion

- We theoretically study expressivity power of temporal graph neural networks.
- And accordingly propose a simple but efficient GRU-GCN framework which lights a new direction in temporal graph representation learning.