
RUMs from 
Head-to-Head Contests

M. Almanza, F. Chierichetti, R. Kumar, A. Panconesi, A. Tomkins



● Important model in Economics and Informatics

● Widely used in studying consumer demand

● Especially important in online/interactive settings (search results, 

product alternatives, recommendations)

Discrete choice



● In discrete choice models, agents need to pick a choice from a 
finite set (slate) of possible choices

● Learning problem: given a set of observed interactions, can we 
predict future ones?

Discrete choice



● A model for discrete choice (McFadden, Nobel prize)

● Each user has a preference for the items (i.e., a permutation)

● Given a set of choices, a user selects the highest ranked item available

Random Utility Models (RUMs)

> >



● A RUM on [n] is a probability distribution D over the permutations of [n]
○ Each permutation can be seen as a user type

● Given a slate, the probability that one of its items is picked is equal to the 
probability of that item appearing before all the others (of the slate) in a 
permutation sampled from D

Random Utility Models (RUMs)

> >

> >

> >

……

0.4

0.2

0.1



0.1 0.6

0.9 0.3

0.4 0.7

● Each slate is a pair
○ head-to-head competitions, online experiences comparing one item and 

an alternative

● Represented as tournament matrix
○ entry Ma,b represents the (empirical) probability of a beating b

Pairwise Choice



0.2 0.6

0.8 0.4

0.4 0.6

0.1 0.6

0.9 0.3

0.4 0.7

● Given a tournament matrix, can we recover a good RUM for it?
○ A RUM is good if the tournament matrix it induces is close to the 

original one

Pairwise Choice

> >

> >

> >

……

p1

p2

p3

≈
?

RUM

recover induces



● Different choice models have been proposed for representing a tournament 
matrix:
○ Blade-Chest — Chen & Joachims, WSDM '16
○ Majority Vote — Makhijani & Ugander, WWW '19
○ Two-level model — Veerathu & Rajkumar, NeurIPS '21
○ …

Previous works



● An algorithm recovering a RUM that approximately minimizes the average 
error over the pairs (in the induced tournament matrix) in polynomial time

● A practical implementation of the previous algorithm finding a 
near-optimal RUM without the polytime guarantee, but that performs well 
in practice

Contributions



● Grötschel, Lovász, Schrijver (1988): the ellipsoid update step can be replaced 
by a Separation Oracle that, given a point, returns either:
○ The point is a valid solution
○ The point is not a valid solution, and here’s a hyperplane separating it 

from the set of valid solutions

● Converges in polynomially many steps

LP - Ellipsoid method



Recovering a RUM

● Consider the LP to find a RUM approximating the input matrix
○ A variable for each permutation (its probability) → exponentially many



Recovering a RUM

● Consider the LP to find a RUM approximating the input matrix
○ A variable for each permutation (its probability) → exponentially many

● Consider the dual: is it better?
○ polynomially many variables
○ exponentially many constraints



Recovering a RUM

● Consider the LP to find a RUM approximating the input matrix
○ A variable for each permutation (its probability) → exponentially many

● Consider the dual: is it better? Yes: we have an ε-apprx Separation Oracle!
○ polynomially many variables
○ exponentially many constraints

● The validity of the permutation constraints of the dual can be determined by 
solving an instance of Minimum Feedback Arc Set (MinFAS)
○ NP-hard but can be approximated in polynomial time → approximated 

oracle



Recovering a RUM

● Consider the LP to find a RUM approximating the input matrix
● Solve the dual with the ellipsoid method and the ε-apprx. Separation Oracle

○ Converges in poly steps → poly many constraints
● Put them back in the primal and solve it to get a RUM that is within ε of the 

optimal solution

● Issue: ellipsoid is not really feasible in practice



Recovering a RUM (quickly)

● Heuristic for the dual:
○ While we can find a violated constraint:

■ Add it to the (dual) LP and solve it

● How to find violated constraints (quickly)?
○ Start from a random permutation
○ Perturb it to find a minimal FAS
○ Check whether the constraint of the permutation given by the Minimal 

FAS is violated: if so, add that constraint to the dual



0.2 0.6

0.8 0.4

0.4 0.6

0.1 0.6

0.9 0.3

0.4 0.7

Experimental results: RUM recovery

> >

> >

> >

……

p1

p2

p3

≈

Recovered RUM

Input tournament matrix RUM-induced matrix



● Our algorithm manages to recover exactly most of the (real-world) 
tournament matrices we tested

Experimental results



● We propose different heuristics 
to find compact RUMs

● Even with a small number of 
permutations (x-axis), the best 
ones achieve a low avg error

Experimental results



Thanks!
Questions/Comments?



● We can use the LP approach to “fit” any set of permutations to a tournament 
matrix

● We propose different heuristics to find a compact representation of the 
tournament matrix using only a fixed number of permutations (e.g. only 10 
permutations)

Experimental results


