

RUMs from Head-to-Head Contests

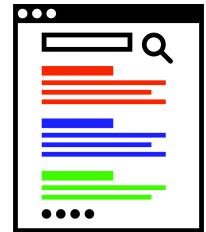
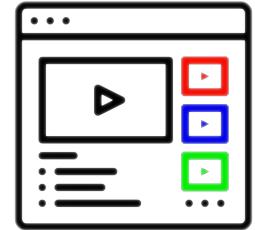
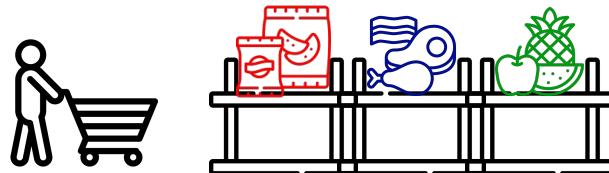
M. Almanza, F. Chierichetti, R. Kumar, A. Panconesi, A. Tomkins

SAPIENZA
UNIVERSITÀ DI ROMA

Google

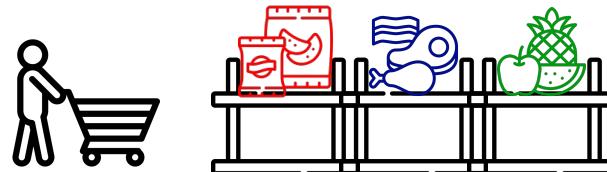
Discrete choice

- Important model in Economics and Informatics
- Widely used in studying consumer demand
- Especially important in online/interactive settings (search results, product alternatives, recommendations)



Discrete choice

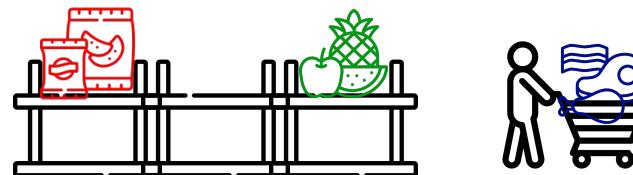
- In discrete choice models, agents need to pick a choice from a finite set (*slate*) of possible choices
- Learning problem: given a set of observed interactions, can we predict future ones?



Random Utility Models (RUMs)

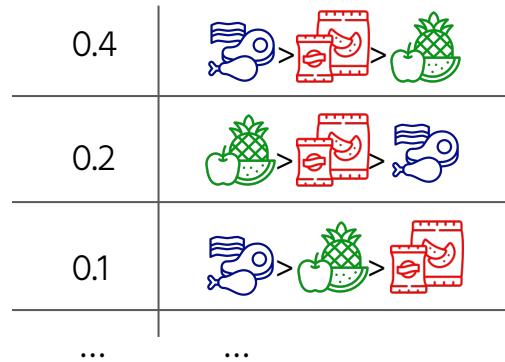
- A model for discrete choice (McFadden, Nobel prize)
- Each user has a preference for the items (i.e., a permutation)

- Given a set of choices, a user selects the highest ranked item available



Random Utility Models (RUMs)

- A *RUM* on $[n]$ is a probability distribution \mathbf{D} over the permutations of $[n]$
 - Each permutation can be seen as a user *type*
- Given a slate, the probability that one of its items is picked is equal to the probability of that item appearing before all the others (of the slate) in a permutation sampled from \mathbf{D}



Pairwise Choice

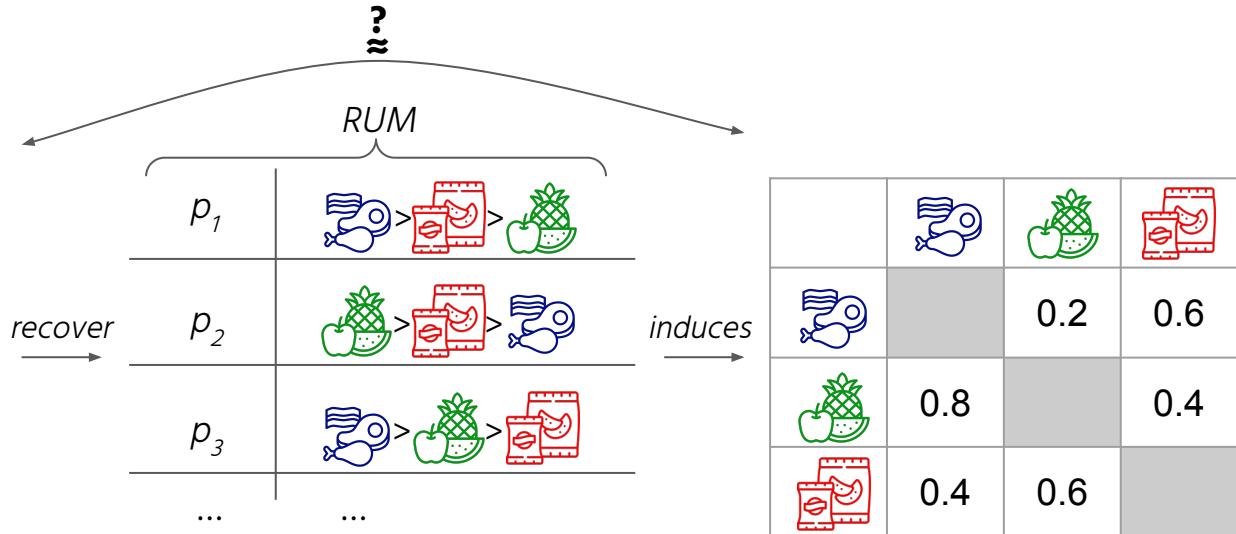
- Each slate is a pair
 - head-to-head competitions, online experiences comparing one item and an alternative
- Represented as tournament matrix
 - entry $M_{a,b}$ represents the (empirical) probability of a beating b

		0.1	0.6
	0.9		0.3
	0.4	0.7	

Pairwise Choice

- Given a tournament matrix, can we **recover** a good RUM for it?
 - A RUM is good if the tournament matrix it induces is close to the original one

		0.1	0.6
	0.9		0.3
	0.4	0.7	



Previous works

- Different choice models have been proposed for representing a tournament matrix:
 - *Blade-Chest* — Chen & Joachims, WSDM '16
 - *Majority Vote* — Makhijani & Ugander, WWW '19
 - *Two-level model* — Veerathu & Rajkumar, NeurIPS '21
 - ...

Contributions

- An algorithm recovering a RUM that **approximately minimizes** the **average error** over the pairs (in the induced tournament matrix) in **polynomial time**
- A practical **implementation** of the previous algorithm finding a **near-optimal** RUM without the polytime guarantee, but that **performs well** in practice

LP - Ellipsoid method

- Grötschel, Lovász, Schrijver (1988): the ellipsoid update step can be replaced by a Separation Oracle that, given a point, returns either:
 - The point **is a valid** solution
 - The point **is not a valid** solution, and here's a hyperplane **separating** it from the set of valid solutions
- Converges in polynomially many steps

Recovering a RUM

- Consider the LP to find a RUM approximating the input matrix
 - A variable for each permutation (its probability) → exponentially many

Recovering a RUM

- Consider the LP to find a RUM approximating the input matrix
 - A variable for each permutation (its probability) → exponentially many
- Consider the dual: is it better?
 - polynomially many variables
 - exponentially many constraints

Recovering a RUM

- Consider the LP to find a RUM approximating the input matrix
 - A variable for each permutation (its probability) → exponentially many
- Consider the dual: is it better? **Yes: we have an ϵ -apprx Separation Oracle!**
 - polynomially many variables
 - exponentially many constraints
- The validity of the *permutation constraints* of the dual can be determined by solving an instance of **Minimum Feedback Arc Set** (MinFAS)
 - NP-hard but can be approximated in polynomial time → approximated oracle

Recovering a RUM

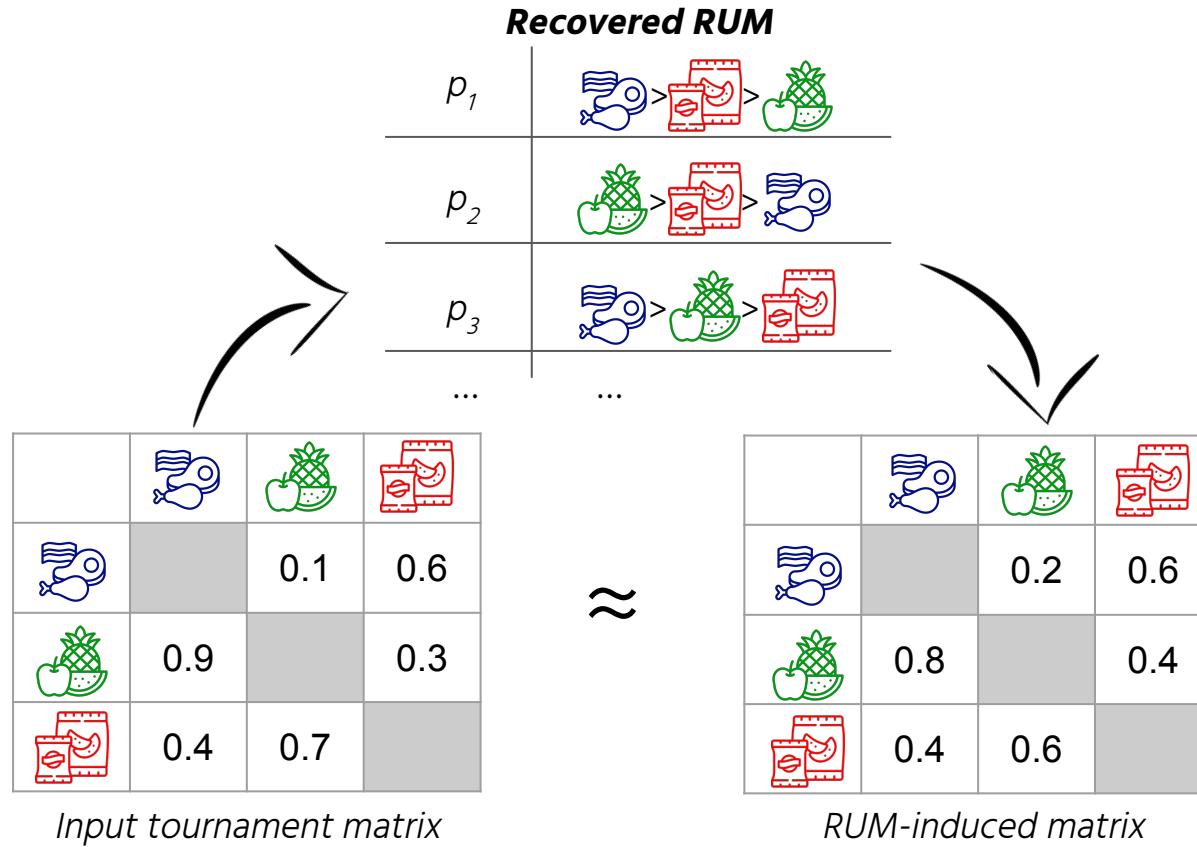
- Consider the LP to find a RUM approximating the input matrix
- Solve the dual with the ellipsoid method and the ϵ -apprx. Separation Oracle
 - Converges in poly steps \rightarrow poly many constraints
- Put them back in the primal and solve it to get a RUM that is within ϵ of the optimal solution

- *Issue: ellipsoid is not really feasible in practice*

Recovering a RUM (quickly)

- Heuristic for the dual:
 - While we can find a violated constraint:
 - Add it to the (dual) LP and solve it
- How to find violated constraints (quickly)?
 - Start from a random permutation
 - Perturb it to find a minimal FAS
 - Check whether the constraint of the permutation given by the Minimal FAS is violated: if so, add that constraint to the dual

Experimental results: RUM recovery



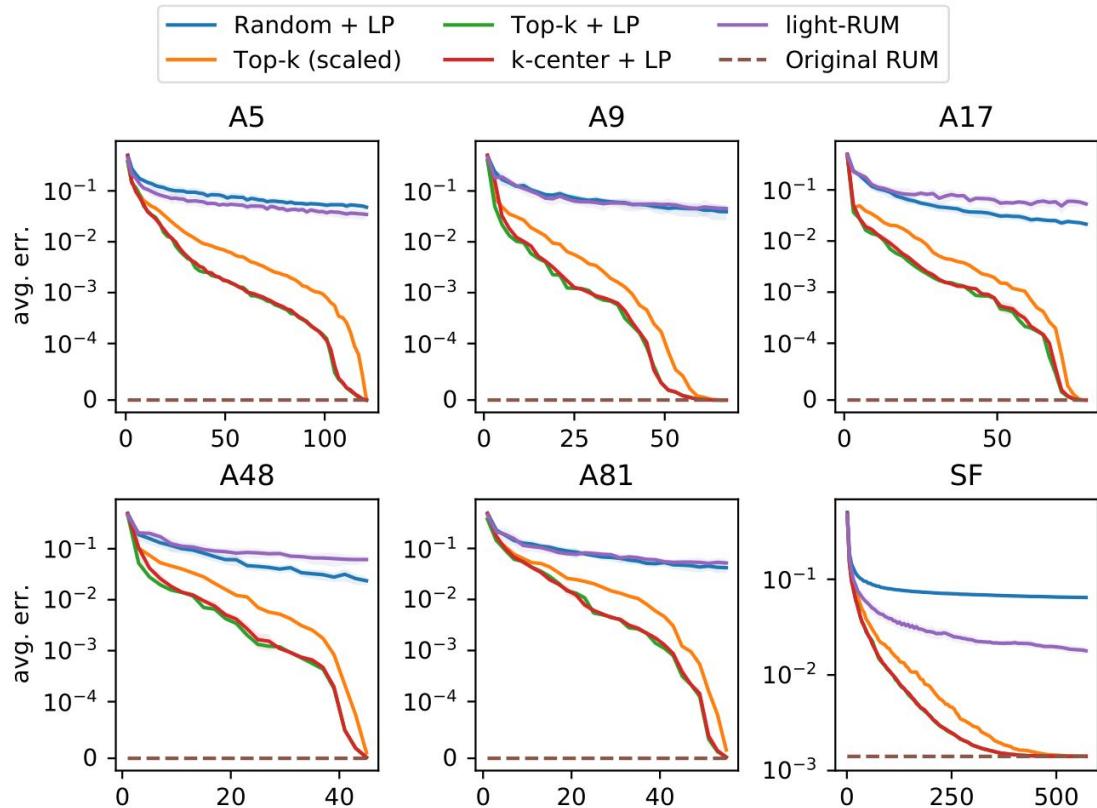
Experimental results

- Our algorithm manages to recover **exactly** most of the (real-world) tournament matrices we tested

Dataset	n	avg. err.	lower bound on avg. err.
A5	16		
A9	12		
A17	13		0
A48	10		
A81	11		
SF	35	0.001408	0.001408
Jester	100	0.000461	0

Experimental results

- We propose different heuristics to find compact RUMs
- Even with a small number of permutations (x-axis), the best ones achieve a low avg error



Thanks!
Questions/Comments?

Experimental results

- We can use the LP approach to “fit” any set of permutations to a tournament matrix
- We propose different heuristics to find a compact representation of the tournament matrix using only a fixed number of permutations (e.g. only 10 permutations)

Dataset	Original RUM	Random + LP	Top- k (scaled)	Top- k + LP	k -center + LP	light-RUM
A5	0	0.156 \pm 0.020	0.059	0.041	0.045 \pm 0.004	0.111 \pm 0.016
A9	0	0.133 \pm 0.030	0.031	0.010	0.011 \pm 0.002	0.119 \pm 0.023
A17	0	0.112 \pm 0.014	0.034	0.014	0.014 \pm 0.001	0.119 \pm 0.033
A48	0	0.107 \pm 0.022	0.043	0.015	0.015 \pm 0.001	0.119 \pm 0.029
A81	0	0.129 \pm 0.024	0.056	0.047	0.046 \pm 0.005	0.113 \pm 0.021
SF	0.00141	0.149 \pm 0.008	0.113	0.104	0.105 \pm 0.008	0.127 \pm 0.011
Jester	0.00046	0.168 \pm 0.008	0.119	0.108	0.108 \pm 0.003	0.121 \pm 0.006