RUMs from
Head-to-Head Contests

M. Almanza, F. Chierichetti, R. Kumar, A. Panconesi, A. Tomkins

00}
© s Google

Discrete choice

Important model in Economics and Informatics
Widely used in studying consumer demand
Especially important in online/interactive settings (search results,

product alternatives, recommendations)

ﬁ'ﬁ' I o

—]

Discrete choice

In discrete choice models, agents need to pick a choice from a
finite set (slate) of possible choices

Learning problem: given a set of observed interactions, can we
predict future ones?

ﬁ%’ @y

Random Utility Models (RUMs)

A model for discrete choice (McFadden, Nobel prize)

Each user has a preference for the items (i.e, a permutation)

Random Utility Models (RUMs)

A RUM on [n] is a probability distribution D over the permutations of [n]
o Each permutation can be seen as a user type

Given a slate, the probability that one of its items is picked is equal to the

probability of that item appearing before all the others (of the slate) in a
permutation sampled from D

0.4 ’ E

0.2

0.1

Pairwise Choice

Each slate is a pair

o head-to-head competitions, online experiences comparing one item and
an alternative

Represented as tournament matrix
o entry M_, represents the (empirical) probability of a beating b

29 =

0.1 0.6
0.9 0.3
04 | 0.7

Pairwise Choice

e Given a tournament matrix, can we recover a good RUM for it?
o A RUM is good if the tournament matrix it induces is close to the

original one
2
RUM
4 A\
= b =) 0‘: =
D B ER P >E> =
:-“39 0.1 0.6 recover P, induces EQ 0.2
¥ 0.9 0.3 - % E 3% 0.8
CEr P, >> CL
E?L- 04 | 07 E§ 04 | 06

Previous works

e Different choice models have been proposed for representing a tournament
matrix:
o Blade-Chest — Chen & Joachims, WSDM 16
o Majority Vote — Makhijani & Ugander, WWW "19
o Two-level model — Veerathu & Rajkumar, NeurlPS ‘21
O

Contributions

e Analgorithm recovering a RUM that approximately minimizes the average
error over the pairs (in the induced tournament matrix) in polynomial time

e A practical implementation of the previous algorithm finding a
near-optimal RUM without the polytime guarantee, but that performs well
In practice

LP - Ellipsoid method

e @Grotschel, Lovasz, Schrijver (1988): the ellipsoid update step can be replaced
by a Separation Oracle that, given a point, returns either:
o The point is a valid solution
o The point is not a valid solution, and here’s a hyperplane separating it
from the set of valid solutions

e Converges in polynomially many steps

Recovering o RUM

e Consider the LP to find a RUM approximating the input matrix
o A variable for each permutation (its probability) — exponentially many

Recovering o RUM

e Consider the LP to find a RUM approximating the input matrix
o A variable for each permutation (its probability) — exponentially many

e Consider the dual: is it better?
o polynomially many variables
o exponentially many constraints

Recovering o RUM

Consider the LP to find a RUM approximating the input matrix
o A variable for each permutation (its probability) — exponentially many

Consider the dual: is it better? Yes: we have an g-apprx Separation Oracle!
o polynomially many variables
o exponentially many constraints

The validity of the permutation constraints of the dual can be determined by
solving an instance of Minimum Feedback Arc Set (MinFAS)
o NP-hard but can be approximated in polynomial time — approximated
oracle

Recovering o RUM

Consider the LP to find a RUM approximating the input matrix
Solve the dual with the ellipsoid method and the g-apprx. Separation Oracle
o Converges in poly steps — poly many constraints

Put them back in the primal and solve it to get a RUM that is within € of the
optimal solution

Issue: ellipsoid is not really feasible in practice

Recovering a RUM (quickly)

e Heuristic for the dual:
o While we can find a violated constraint:
= Add it to the (dual) LP and solve it

e How to find violated constraints (quickly)?
o Start from a random permutation
o Perturb it to find a minimal FAS
o Check whether the constraint of the permutation given by the Minimal
FAS is violated: if so, add that constraint to the dual

Experimental results: RUM recovery

Recovered RUM

5

EJ 04 | 07

Input tournament matrix

N

Eﬁ- 04 0.6

RUM-induced matrix

Experimental results

Our algorithm manages to recover exactly most of the (real-world)

tournament matrices we tested

lower bound
Dataset n avg. efrr.

on avg. err.
AS 16
A9 12
Al7 13 0
A48 10
A81 11
SF 35 | 0.001408 0.001408
Jester 100 | 0.000461 0

Experimental results

—— Random + LP —— Top-k + LP —— light-RUM
° We propose diﬂ:erent heuriStiCS —— Top-k (scaled) @ —— k-center + LP ——=- Original RUM
A5 A9 Al7

to find compact RUMs

e Even with a small number of
permutations (x-axis), the best
ones achieve a low avg error

avg. err.

10—4 -

10 1 107!
£ 1072 - 1072
S 1073 - 1073
©
107 104
0 - 0 A

Thanks!
Questions/Comments?

We can use the LP approach to “fit” any set of permutations to a tournament

matrix

Experimental results

We propose different heuristics to find a compact representation of the
tournament matrix using only a fixed number of permutations (e.g. only 10

permutations)

Dataset | Original RUM | Random +LP Top-k (scaled) Top-k+LP k-center + LP light-RUM

AS 0 0.156 +0.020 0.059 0.041 0.045 +£0.004 0.111 +0.016
A9 0 0.133 +0.030 0.031 0.010 0.011 £0.002 0.119 +0.023
Al7 0 0.112 £0.014 0.034 0.014 0.014 +0.001 0.119 +0.033
A48 0 0.107 +£0.022 0.043 0.015 0.015 +0.001 0.119 +0.029
A81 0 0.129 +£0.024 0.056 0.047 0.046 +£0.005 0.113 +0.021
SF 0.00141 0.149 +0.008 0.113 0.104 0.105 +£0.008 0.127 +0.011
Jester 0.00046 0.168 +0.008 0.119 0.108 0.108 +0.003 0.121 +0.006

