Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets Lily H. Zhang*, Veronica Tozzo*, John M. Higgins, Rajesh Ranganath Point cloud classification Prediction of health outcomes from single-cell data State-of-the-art methods: - Deep Sets (Zaheer et al. 2018) - Set Transformer (Lee et al. 2019) State-of-the-art methods: - Deep Sets (Zaheer et al. 2018) - Set Transformer (Lee et al. 2019) What happens when we go deep? #### Deep Sets and Set Transformer suffer from vanishing/exploding gradients #### Deep Sets layer #### Set Transformer layer ### Layer Norm forces unwanted invariances #### Layer norm Per set, per sample standardization Per feature transformation #### Layer Norm forces unwanted invariances #### Layer norm Per set, per sample standardization Per feature transformation $$\mathbf{x}_m = \alpha \mathbf{x}_{m'} \quad \Box \quad \mathsf{LN}(\mathbf{x}_s W) = \mathsf{LN}(\mathbf{x}_{s'} W)$$ - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm #### Set Transformer - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm #### Set Transformer - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm $$\mathbf{x}_{l+1} = g(\mathbf{x}_l) + f(\mathbf{x}_l) \quad \text{or} \quad \mathbf{x}_{l+1} = g(\mathbf{x}_l + f(\mathbf{x}_l))$$ - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm #### Clean path residual connections have better performances than non-clean path | Path | Residual type | Norm | Hematocrit (MSE) | Point Cloud (CE) | Mnist Var (MSE) | Normal Var (MSE) | |-----------------|----------------|--------------|----------------------|---------------------------------------|-------------------------|---------------------| | Deep Sets | non-clean path | layer norm | 19.6649 ± 0.0394 | 0.5974 ± 0.0022 | 0.3528 ± 0.0063 | 1.4658 ± 0.7259 | | | | feature norm | 19.9801 ± 0.0862 | 0.6541 ± 0.0022 | 0.3371 ± 0.0059 | 0.8352 ± 0.3886 | | | | set norm | 19.3146 ± 0.0409 | $\textbf{0.6055} \pm \textbf{0.0007}$ | $\bf 0.3421 \pm 0.0022$ | 0.2094 ± 0.1115 | | | clean path | layer norm | 19.4192 ± 0.0173 | 0.63682 ± 0.0067 | 0.3997 ± 0.0302 | 0.0384 ± 0.0105 | | | | feature norm | 19.3917 ± 0.0685 | 0.7148 ± 0.0164 | 0.3368 ± 0.0049 | 0.1195 ± 0.0000 | | | | set norm | 19.2118 ± 0.0762 | 0.7096 ± 0.0049 | 0.3441 ± 0.0036 | 0.0198 ± 0.0041 | | Set Transformer | non-clean path | layer norm | 19.1975 ± 0.1395 | 0.9219 ± 0.0052 | 2.0663 ± 1.0039 | 0.0801 ± 0.0076 | | | | feature norm | 19.4968 ± 0.1442 | 0.8251 ± 0.0025 | 0.4043 ± 0.0078 | 0.0691 ± 0.0146 | | | | set norm | 19.0521 ± 0.0288 | 1.9167 ± 0.4880 | 0.4064 ± 0.0147 | 0.0249 ± 0.0112 | | | clean path | layer norm | 18.5747 ± 0.0263 | 0.6656 ± 0.0148 | 0.6383 ± 0.0020 | 0.0104 ± 0.0000 | | | | feature norm | 19.1967 ± 0.0330 | $\bf 0.6188 \pm 0.0141$ | 0.7946 ± 0.0065 | 0.0074 ± 0.0010 | | | | set norm | 18.7008 ± 0.0183 | 0.6280 ± 0.0098 | 0.8023 ± 0.0038 | 0.0030 ± 0.0000 | - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm #### Layer norm Per set, per sample standardization Per feature transformation - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm #### Layer norm Per set, per sample standardization Per feature transformation #### Set norm Per set standardization Per feature transformation - Careful design of residual connections, Clean path residual connections - Normalization layer specific for sets, Set Norm #### Layer norm Per set, per sample standardization Per feature transformation #### Set norm Per set standardization Per feature transformation - Less unrecoverable information - No batch considerations - Permutation equivariant ### Set norm performs better than other norms | Path | Residual type | Norm | Hematocrit (MSE) | Point Cloud (CE) | Mnist Var (MSE) | Normal Var (MSE) | |-----------------|----------------|--------------|----------------------|-------------------------|---------------------|---------------------| | Deep Sets | non-clean path | layer norm | 19.6649 ± 0.0394 | 0.5974 ± 0.0022 | 0.3528 ± 0.0063 | 1.4658 ± 0.7259 | | | | feature norm | 19.9801 ± 0.0862 | 0.6541 ± 0.0022 | 0.3371 ± 0.0059 | 0.8352 ± 0.3886 | | | | set norm | 19.3146 ± 0.0409 | 0.6055 ± 0.0007 | 0.3421 ± 0.0022 | 0.2094 ± 0.1115 | | | clean path | layer norm | 19.4192 ± 0.0173 | 0.63682 ± 0.0067 | 0.3997 ± 0.0302 | 0.0384 ± 0.0105 | | | | feature norm | 19.3917 ± 0.0685 | 0.7148 ± 0.0164 | 0.3368 ± 0.0049 | 0.1195 ± 0.0000 | | | | set norm | 19.2118 ± 0.0762 | 0.7096 ± 0.0049 | 0.3441 ± 0.0036 | 0.0198 ± 0.0041 | | Set Transformer | non-clean path | layer norm | 19.1975 ± 0.1395 | 0.9219 ± 0.0052 | 2.0663 ± 1.0039 | 0.0801 ± 0.0076 | | | | feature norm | 19.4968 ± 0.1442 | 0.8251 ± 0.0025 | 0.4043 ± 0.0078 | 0.0691 ± 0.0146 | | | | set norm | 19.0521 ± 0.0288 | 1.9167 ± 0.4880 | 0.4064 ± 0.0147 | 0.0249 ± 0.0112 | | | clean path | layer norm | 18.5747 ± 0.0263 | 0.6656 ± 0.0148 | 0.6383 ± 0.0020 | 0.0104 ± 0.0000 | | | | feature norm | 19.1967 ± 0.0330 | $\bf 0.6188 \pm 0.0141$ | 0.7946 ± 0.0065 | 0.0074 ± 0.0010 | | | | set norm | 18.7008 ± 0.0183 | 0.6280 ± 0.0098 | 0.8023 ± 0.0038 | 0.0030 ± 0.0000 | # Deep Sets++ and Set Transformer++ reach high depth with improved performances | Model | No. Layers | Hematocrit (MSE) | MNIST Var (MSE) | Point Cloud (accuracy) | CelebA (accuracy) | Anemia (accuracy) | |-------------------|------------|----------------------|---------------------|------------------------|-------------------------|---------------------| | DeepSets | 3 | 19.1257 ± 0.0361 | 0.4520 ± 0.0111 | 0.7755 ± 0.0051 | 0.3808 ± 0.0016 | 0.5282 ± 0.0018 | | | 25 | 20.2002 ± 0.0689 | 1.3492 ± 0.2801 | 0.3498 ± 0.0340 | 0.1005 ± 0.0000 | 0.4856 ± 0.0000 | | | 50 | 25.8791 ± 0.0014 | 5.5545 ± 0.0014 | 0.0409 ± 0.0000 | 0.1005 ± 0.0000 | 0.4856 ± 0.0000 | | Deep Sets++ | 3 | 19.5882 ± 0.0555 | 0.5895 ± 0.0114 | 0.7865 ± 0.0093 | 0.5730 ± 0.0016 | 0.5256 ± 0.0019 | | | 25 | 19.1384 ± 0.1019 | 0.3914 ± 0.0100 | 0.8030 ± 0.0034 | $\bf 0.6021 \pm 0.0072$ | 0.5341 ± 0.0118 | | | 50 | 19.2118 ± 0.0762 | 0.3441 ± 0.0036 | 0.8029 ± 0.0005 | 0.5763 ± 0.0134 | 0.5561 ± 0.0202 | | Set Transformer | 2 | 18.8750 ± 0.0058 | 0.6151 ± 0.0072 | 0.7774 ± 0.0076 | 0.1292 ± 0.0012 | 0.5938 ± 0.0075 | | | 8 | 18.9095 ± 0.0271 | 0.3271 ± 0.0068 | 0.7848 ± 0.0061 | 0.4299 ± 0.1001 | 0.5943 ± 0.0036 | | | 16 | 18.7436 ± 0.0148 | 6.2663 ± 0.0036 | 0.7134 ± 0.0030 | 0.4570 ± 0.0540 | 0.5853 ± 0.0049 | | Set Transformer++ | 2 | 18.9223 ± 0.0273 | 1.1525 ± 0.0158 | 0.8146 ± 0.0023 | 0.6533 ± 0.0012 | 0.5770 ± 0.0223 | | | 8 | 18.8984 ± 0.0703 | 0.9437 ± 0.0137 | 0.8247 ± 0.0020 | 0.6621 ± 0.0021 | 0.5680 ± 0.0110 | | | 16 | 18.7008 ± 0.0183 | 0.8023 ± 0.0038 | 0.8258 ± 0.0046 | 0.6587 ± 0.0001 | 0.5544 ± 0.0113 | #### Flow RBC - >100,000 patients, collected over 6 years - Input: single-cell measurements - Output: cell population property (hematocrit) - Open-sourced for benchmarking! # Set Transformer++/ Deep Sets++ #### Flow RBC Come visit us at our poster: Hall E #524!